Publications by authors named "Guangming Yao"

Background: Heterocyclic amines (HAs) and N-nitrosamines (NAs) are formed easily during the thermal processing of food, and epidemiological studies have demonstrated that consuming HAs and NAs increases the risk of cancer. However, there are few studies on the application of back propagation artificial neural network (BP-ANN) models to simultaneously predict the content of HAs and NAs in sausages. This study aimed to investigate the effects of cooking time and temperature, smoking time and temperature, and fat-to-lean ratio on the formation of HAs and NAs in smoked sausages, and to predict their total content based on the BP-ANN model.

View Article and Find Full Text PDF

Objective: We aimed to explore the factors affecting the prognosis of patients with acute cerebrovascular occlusion with high National Institutes of Health Stroke Scale (NIHSS) scores treated with the SWIM (Solitaire™ stent retriever-assisted thrombectomy with immediate mechanical aspiration) technique using an intracranial support catheter.

Methods: A retrospective analysis was conducted in 72 patients with acute cerebrovascular occlusion who underwent SWIM surgery in the Affiliated Hospital of Chengde Medical University in China between January 2020 and June 2022. The patients were divided into a good prognosis group (Modified Rankin Score [mRS] 0 to 2; n = 30) and a poor prognosis group (mRS score 3 to 6; n = 42) on their mRS scores 3 months after surgery.

View Article and Find Full Text PDF

The effects of chicken roasting temperature and time on the production of heterocyclic aromatic amines (HAAs) were investigated and an HAA prediction model based on heating conditions was established. Generally, the HAA content was significantly affected by the heating conditions in the roast chicken. Transportation of precursors from meat to skin, exposure of skin to high temperatures, and fat oxidation in the skin may result in higher HAAs than meat.

View Article and Find Full Text PDF

Kinsenoside, the herb-derived medicine isolated from the plant Anoect chilus, has diverse pharmacological actions, and it is considered to be a promising antihyperlipidemic drug candidate. This study evaluates the effects of kinsenoside on CYP enzyme-mediated drug metabolism in order to predict the potential for kinsenoside-drug interactions. Kinsenoside was tested at different concentrations of 0.

View Article and Find Full Text PDF

Kinsenoside is a major bioactive constituent isolated from Anoectochilus formosanus and is investigated as an antihyperlipidemic candidate. In this study, a rapid, sensitive, and reliable bioanalytical method was developed for the determination of kinsenoside in rat plasma using hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). The plasma sample was pretreated with 1% acetic acid, followed by protein precipitation with acetonitrile:methanol (70:30).

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most frequent and most aggressive brain tumor in adults. The introduction of temozolomide (TMZ) has advanced chemotherapy for malignant gliomas. However, a considerable number of GBM cases are refractory to TMZ, the need for more effective therapeutic options is overwhelming.

View Article and Find Full Text PDF

Spatial-temporal calcium dynamics due to calcium release, buffering, and re-uptaking plays a central role in studying excitation-contraction (E-C) coupling in both healthy and defected cardiac myocytes. In our previous work, partial differential equations (PDEs) had been used to simulate calcium dynamics with realistic geometries extracted from electron microscopic imaging data. However, the computational costs of such simulations are very high on a single processor.

View Article and Find Full Text PDF

Spatial–temporal calcium dynamics due to calcium release, buffering and re-uptaking plays a central role in studying excitation–contraction (E–C) coupling in both normal and diseased cardiac myocytes. In this paper, we employ a meshless method, namely, the local radial basis function collocation method (LRBFCM), to model such calcium behaviors by solving a nonlinear system of reaction–diffusion partial differential equations. In particular, a simplified structural unit containing a single transverse tubule (T-tubule) and its surrounding half sarcomeres is investigated using the meshless method.

View Article and Find Full Text PDF

Spatial-temporal Ca(2+) dynamics due to Ca(2+) release, buffering, and reuptaking plays a central role in studying excitation-contraction (E-C) coupling in both normal and diseased cardiac myocytes. In this paper, we employ two numerical methods, namely, the meshless method and the finite element method, to model such Ca(2+) behaviors by solving a nonlinear system of reaction-diffusion partial differential equations at two scales. In particular, a subcellular model containing several realistic transverse tubules (or t-tubules) is investigated and assumed to reside at different locations relative to the cell membrane.

View Article and Find Full Text PDF