Although size exclusion chromatography (SEC) has been used successfully to determine the molecular weight distribution (MWD) of statistical poly[(N-vinyl pyrrolidone)-co-(vinyl acetate)]s [PVPVAs], SEC cannot separate the copolymers according to their chemical composition. In this article, the separation of commercial PVPVAs with varying chemical compositions is reported, by aqueous reversed-phase gradient liquid chromatography (RPLC) using polystyrene-divinylbenzene-based wide pore columns. RPLC-SEC cross-fractionation indicates the presence of molar mass dependant effects during RPLC separation due to broad MWD for the copolymer studied; therefore the width of the RPLC peak could not be associated entirely with chemical composition distribution of the copolymer.
View Article and Find Full Text PDFPolyisobutylene (PIB)-based block copolymers have attracted significant interest as biomaterials. Poly(styrene-b-isobutylene-b-styrene) (SIBS) has been shown to be vascularly compatible and, when loaded with paclitaxel (PTx) and coated on a coronary stent, has the ability to deliver the drug directly to arterial walls. Modulation of drug release from this polymer has been achieved by varying the drug/polymer ratio, by blending SIBS with other polymers, and by derivatizing the styrene end blocks to vary the hydrophilicity of the copolymer.
View Article and Find Full Text PDFA general new route to well-defined polymeric Lewis acids via borylation of silylated polymers is reported. Trimethylsilylated polystyrene (PS-Si) of controlled molecular weight and low polydispersity (PDI < 1.15) was obtained via atom transfer radical polymerization (ATRP) of 4-(trimethylsilyl)styrene.
View Article and Find Full Text PDF