Zhonghua Nan Ke Xue
January 2024
Phthalate esters are plasticizers that people are often exposed to in daily life. They are closely related to our lives and generally exist in the air, soil and water. Studies show that the exposure to phthalates is associated with male reproductive damage.
View Article and Find Full Text PDFCopper metal catalyst seeds have recently triggered much research interest for the development of low-cost and high-performance metallic catalysts with industrial applications. Herein, we present metallic Cu catalyst seeds deposited by an atomic layer deposition method on polymer substrates. The atomic layer deposited Cu (ALD-Cu) can ideally substitute noble metals Ag, Au, and Pd to catalyze Cu electroless deposition.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
The increasing demand for the state-of-the-art electrochromic devices has received great interest in synthesizing Prussian blue (PB) nanoparticles with a uniform diameter that exhibit excellent electrochromism, electrochemistry, and cyclability. Herein, we report the controllable synthesis of sub-100 nm PB nanoparticles via the coprecipitation method. The diameter of PB nanoparticles can be modulated by adjusting the reactant concentration, the selection of a chelator, and their purification.
View Article and Find Full Text PDFThe low-temperature atomic layer deposition of metal on polymer surfaces is often challenging owing to the deficiency of functional groups and reactivity. Here, the deposition of ALD-Cu employing Cu(hfac) and EtZn at a low temperature (120 °C) on polyimide (PI) substrates is improved by the utilization of an ultrathin ALD-ZnO buffer layer. A conformal and continuous ALD-Cu thin film with low resistivity (6.
View Article and Find Full Text PDFApoptosis has been discovered as a mechanism of cell death. The purpose of this study is to identify the diagnostic signature factors related to bladder cancer (BLCA) through apoptosis related genes (ARGs). Clinicopathological parameters and transcriptomics data of 1,440 BLCA patients were obtained from 7 datasets (GSE13507, GSE31684, GSE32548, GSE32894, GSE48075, TCGA-BLCA, and IMvigor210).
View Article and Find Full Text PDFA sophisticated understanding of phase transformations and microstructure evolution is crucial in mechanical property optimization for the newly developed low-cost Ti-35421 (Ti-3Al-5Mo-4Cr-2Zr-1Fe wt.%) titanium alloy. The phase transformations in dual-phase Ti-35421 were studied by experiments and thermo-kinetic modeling.
View Article and Find Full Text PDFβ-type (with bcc structure) titanium alloys have been widely used as artificial implants in the medical field due to their favorable properties. Among them, Ti-Mo alloy attracted numerous interests as metallic biomaterials. Understanding of kinetic characteristics of Ti alloys is critical to understand and manipulate the phase transformation and microstructure evolution during homogenization and precipitation.
View Article and Find Full Text PDFNiAl-based eutectic alloys, consisting of an ordered bcc matrix (B2) and disordered bcc fibers (A2), have been a subject of intensive efforts aimed at tailoring the properties of many of the currently used nickel-based superalloys. A thermodynamic phase field model was developed on a thermodynamic foundation and fully integrated with a thermo-kinetic database of the Ni-Al-Cr ternary system to elucidate the resulting peculiar eutectic microstructure. Invoking a variation of the liquid/solid interfacial thickness with temperature, we simulated the characteristic sunflower-like eutectic microstructures in the NiAl-Cr composites, consistent with experimental observations.
View Article and Find Full Text PDF