Publications by authors named "Guanglong Tian"

Artificial drainage has led to significant amounts of non-point dissolved reactive phosphorus (DRP) loss from tile-drained agroecosystems, jeopardizing water quality and triggering harmful algal blooms. Designer biochar has shown great promise on the laboratory scale for removing DRP from contaminated water. However, whether its removal performance, stability, and engineering value can be sustained under field conditions over time remains unclear.

View Article and Find Full Text PDF

Information about impacts of long-term biosolids application on soil microbial populations and functional groups and N cycling is important for evaluating soil health and agroecosystem sustainability under long-term biosolids application. Mine spoil plots received annual biosolids application from 1973 to 2010 at low (16.8 Mg ha yr), medium (33.

View Article and Find Full Text PDF

The identification and quantification of the ecological risks, sources and distribution of heavy metals in purple soils are essential for regional pollution control and management. In this study, geo-accumulation index (I), enrichment factor (EF), pollution index (PI), potential ecological risk index (RI), principal component analysis (PCA) model and geographical detector (GD) were combined to evaluate the status, ecological risk, and sources of heavy metals (HMs) in soils from a typical purple soil areas of Sichuan province. The results showed that the average contents of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn in purple soil were 7.

View Article and Find Full Text PDF

Millions of acres of farmland in the midwestern United States (US) are artificially drained, and this contributes to the export of nitrogen (N) and phosphorus (P) from agricultural land to surface water. Using a 36-acre tile-drained farm field, effects of P-sorbing media in combination with a denitrifying bioreactor system constructed with woodchips (WC) and corn stover (CS) on reducing nutrient export in drainage water were tested for 3 cropping years (2018-2020). The field was divided into three subfields as replicates.

View Article and Find Full Text PDF

Biosolids produced at wastewater treatment facilities are extensively used in agricultural land and degraded mine sites to improve soil health and soil organic carbon (SOC) stocks. Many studies have reported increases in SOC due to application of biosolids to such sites. However, lack of a comprehensive quantification on overall trends and changes of magnitude in SOC remains.

View Article and Find Full Text PDF

The nitrogen (N) release from composted and un-composted biosolids and plant available N (PAN) of the biosolids were quantified to evaluate if composting can contribute to stabilize biosolids N and reduce the nitrate ( ) leaching potential in biosolids-amended soil. Biosolids were composted at >55°C for 21 days after mixing the biosolids with yard waste at 1:1 (w/w) ratio. In the N release study, we installed field lysimeters filled with soil (sand and clay) amended with composted and un-composted biosolids at two rates (30 and 150 dry Mg/ha) and measured the inorganic N in leachate after each rainfall and soil inorganic N monthly.

View Article and Find Full Text PDF

Pharmaceutical and personal care product compounds (PPCPs) comprise a large and diverse group of chemical compounds, including prescription and over-the-counter drugs and cleaning agents. Although PPCPs in the effluent and biosolids of water resource recovery facilities (WRRFs) are currently not regulated, public interest has led the Metropolitan Water Reclamation District of Greater Chicago to monitor for 11 PPCPs in the influent, effluent, and biosolids at its seven WRRFs. In 2016, the U.

View Article and Find Full Text PDF

Background: Soil organic carbon (SOC) and carbon (C) functional groups in different particle-size fractions are important indicators of microbial activity and soil decomposition stages under wildfire disturbances. This research investigated a natural Tsuga forest and a nearby fire-induced grassland along a sampling transect in Central Taiwan with the aim to better understand the effect of forest wildfires on the change of SOC in different soil particle scales. Soil samples were separated into six particle sizes and SOC was characterized by solid-state C nuclear magnetic resonance spectroscopy in each fraction.

View Article and Find Full Text PDF

Although the effects of gap formation resulting from thinning on microclimate, plant generation and understory plant community have been well documented, the impact of thinning on soil microbial community and related ecological functions of forests particularly in subalpine coniferous region is largely unknown. Here, the effects of thinning on soil microbial abundance and community structure using phospholipid fatty acid (PLFA) in pine plantations were investigated 6 years after thinning. The experimental treatments consisted of two distinct-sized gaps (30 m or 80 m in size) resulting from thinning, with closed canopy (free of thinning) as control.

View Article and Find Full Text PDF

Badland soils-which have high silt and clay contents, bulk density, and soil electric conductivity- cover a large area of Southern Taiwan. This study evaluated the amelioration of these poor soils by thorny bamboo, one of the few plant species that grows in badland soils. Soil physiochemical and biological parameters were measured from three thorny bamboo plantations and nearby bare lands.

View Article and Find Full Text PDF

Studying the influence of climatic and/or site-specific factors on soil organic matter (SOM) along an elevation gradient is important for understanding the response of SOM to global warming. We evaluated the composition of SOM and structure of humic acids along an altitudinal gradient from 600 to 1400 m in moso bamboo (Phyllostachys edulis) plantations in central Taiwan using NMR spectroscopy and photometric analysis. Total organic C and total nitrogen (N) content increased with increasing elevation.

View Article and Find Full Text PDF

Bamboo, which has dense culms and root rhizome systems, can alter soil properties when it invades adjacent forests. Therefore, this study investigated whether bamboo invasions can cause changes in soil organic matter (SOM) composition and soil humification. We combined solid-state (13)C NMR spectroscopy and chemical analysis to examine the SOM in a Japanese cedar (Cryptomeria japonica) and adjacent bamboo (Phyllostachys edulis) plantation.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on the role of labile organic matter, specifically soil labile carbon (C) and nitrogen (N), in a primary Chamaecyparis forest in Taiwan, highlighting gaps in our understanding of these components in various forest types.
  • The research confirmed that the forest has a significant amount of soil labile C and N, with high concentrations of dissolved organic carbon (DOC) and nitrogen (DON) due to the forest's undisturbed and acidic soil conditions.
  • Contrary to expectations, the study found that topography had little effect on the distribution of soil labile C and N, indicating a more uniform soil environment throughout different locations in the forest.
View Article and Find Full Text PDF

The goal of this work was to study changes in anaerobically stored digested sludge under different lengths of storage time to evaluate the quality of final product biosolids. The analyses of collected data suggest the organic matter degradation occurrence in the anaerobic environment of the lagoon approximately within the first year. After that, the degradation becomes very slow, which is likely caused by unfavorable environmental conditions.

View Article and Find Full Text PDF

Background: The Chamaecyparis forest is a valuable natural resource in eastern Asia. The characteristics of soil humic substances and the influence of environmental factors in natural Chamaecyparis forests in subtropical mountain regions are poorly understood. The study site of a perhumid Chamaecyparis forest is in the Yuanyang Lake Preserved Area in northcentral Taiwan.

View Article and Find Full Text PDF

Leaching of nitrogen (N) and phosphorus (P) to groundwater can limit the land application of fertilizer, biosolids, and other soil amendments. Groundwater quality monitoring data collected over a 34-yr period at a 1790-ha site in Fulton County, Illinois, where strip-mined land was reclaimed with biosolids, were used to evaluate long-term impacts of biosolids on groundwater N, P, and other parameters. Seven strip-mined fields repeatedly treated with biosolids at 801 to 1815 Mg ha cumulative rate (equivalent to 24-55 dry Mg ha yr) between 1972 and 2004 were compared with another seven fields treated annually with chemical fertilizer at agronomic rates.

View Article and Find Full Text PDF

Globally, substantial quantities of organic amendments (OAs) such as plant residues (3.8×10(9) Mg/yr), biosolids (10×10(7) Mg/yr), and animal manures (7×10(9) Mg/yr) are produced. Recycling these OAs in agriculture possesses several advantages such as improving plant growth, yield, soil carbon content, and microbial biomass and activity.

View Article and Find Full Text PDF

Data collected for 35 yr from a 1790-ha strip mine reclamation site in Fulton County, Illinois, where biosolids were applied from 1972 to 2004, were used to evaluate the impacts of long-term biosolids application on metal concentrations in groundwater. Groundwater samples were collected between 1972 and 2006 from wells installed in seven strip-mined fields treated with biosolids at cumulative loading rates of 801 to 1815 dry Mg ha and from another seven fields (also strip mined) treated with mineral fertilizer. Samples were collected monthly between 1972 and 1986 and quarterly between 1987 and 2004 and were analyzed for total metals.

View Article and Find Full Text PDF

The goal of this work was to study long-term behavior of anaerobically digested and dewatered sludge (biosolids) in a lagoon under anaerobic and aerobic conditions to determine the stability of the final product as an indicator of its odor potential. Field lagoons were sampled to estimate spatial and temporal variations in the physical-chemical properties and biological stability characteristics such as volatile solids content, accumulated oxygen uptake, and soluble protein content and odorous compound assessment. The analyses of collected data suggest that the surface layer of the lagoon (depth of above 0.

View Article and Find Full Text PDF