Drought stress is an annual global phenomenon that has devastating effects on crop production, so numerous studies have been conducted to improve crop drought resistance. Plant-associated microbiota play a crucial role in crop health and growth; however, we have a limited understanding of the key processes involved in microbiome-induced crop adaptation to drought stress. In this review, we summarize the adverse effects of drought stress on crop growth in terms of germination, photosynthesis, nutrient uptake, biomass, and yield, with a focus on the response of soil microbial communities to drought stress and plant-microbe interactions under drought stress.
View Article and Find Full Text PDFIdentifying the potential factors associated with the impact of long-term drip irrigation (DI) on soil ecosystems is essential for responding to the environmental changes induced by extensive application of DI technology in arid regions. Herein, we examined the effects of the length of time that DI lasts in years (N) on soil bacterial diversity as well as the soil bacterial community assembly process and the factors influencing it. The results showed that long-term DI substantially reduced soil salinity and increased soil bacterial diversity while affecting the soil bacterial community structure distinctly.
View Article and Find Full Text PDFIn terms of tillering potential, the aboveground portions of rice are significantly influenced by the nitrogen level (NL) and transplant density (TD). To obtain a suitable combination of NL and TD, five NLs (0, 90, 180, 270 and 360 kg ha-1) and two TDs [high density (HD), 32.5×104 hills ha-1; low density (LD), 25.
View Article and Find Full Text PDF