Sci Bull (Beijing)
October 2024
We have investigated the internal structure of the open- and hidden-charmed (DD/D¯D) molecules in the unified framework. We first fit the experimental lineshape of the T state and extract the DD interaction, from which the T is assumed to arise solely. Then we obtain the DD¯ interaction by charge conjugation.
View Article and Find Full Text PDFA novel framework is proposed to extract near-threshold resonant states from finite-volume energy levels of lattice QCD and is applied to elucidate structures of the positive parity D_{s}. The quark model, the quark-pair-creation mechanism and D^{(*)}K interaction are incorporated into the Hamiltonian effective field theory. The bare 1^{+} cs[over ¯] states are almost purely given by the states with heavy-quark spin bases.
View Article and Find Full Text PDFRecently, the hidden charm tetraquark states Z(3985) and Z(4000) with strangeness were observed by the BESIII and LHCb collaborations, respectively, which are great breakthroughs for exploring exotic quantum chromodynamics (QCD) structures. The first and foremost question is whether they are the same state. In this work, we explore the implications of the narrower state Z(3985) in BESIII and the wider one Z(4000) in LHCb as two different states.
View Article and Find Full Text PDFIntroduction: Paroxysmal Nocturnal Hemoglobinuria (PNH) is an acquired clonal disease of hematopoietic stem cells. It is caused by somatic mutation of the X-linked PIGA gene, resulting in a deficient expression of glycosylphosphatidylinositol-anchored proteins (GPI-APs). In this study, we aimed to explore the diagnostic value of next-generation sequencing (NGS) and potential molecular basis in PNH patients.
View Article and Find Full Text PDFBrief Bioinform
September 2019
Cooperative regulation among multiple microRNAs (miRNAs) is a complex type of posttranscriptional regulation in human; however, the global view of the system-level regulatory principles across cancers is still unclear. Here, we investigated miRNA-miRNA cooperative regulatory landscape across 18 cancer types and summarized the regulatory principles of miRNAs. The miRNA-miRNA cooperative pan-cancer network exhibited a scale-free and modular architecture.
View Article and Find Full Text PDFGene regulatory network perturbations contribute to the development and progression of cancer, however, molecular determinants that mediate transcriptional perturbations remain a fundamental challenge for cancer biology. We show that transcriptional perturbations are widely mediated by long noncoding RNAs (lncRNAs) via integration of genome-wide transcriptional regulation with paired lncRNA and gene expression profiles. Systematic construction of an LncRNA Modulator Atlas in Pan-cancer (LncMAP) reveals distinct types of lncRNA regulatory molecules, which are expressed in multiple tissues, exhibit higher conservation.
View Article and Find Full Text PDFRecent advances in transcriptome sequencing have made it possible to distinguish ubiquitously expressed long non-coding RNAs (UE lncRNAs) from tissue-specific lncRNAs (TS lncRNAs), thereby providing clues to their cellular functions. Here, we assembled and functionally characterized a consensus lncRNA transcriptome by curating hundreds of RNA-seq datasets across normal human tissues from 16 independent studies. In total, 1,184 UE and 2,583 TS lncRNAs were identified.
View Article and Find Full Text PDF