Microtubules are polymers composed of αβ-tubulin subunits that provide structure to cells and play a crucial role in in the development and function of neuronal processes and cilia, microtubule-driven extensions of the plasma membrane that have sensory (primary cilia) or motor (motile cilia) functions. To stabilize microtubules in neuronal processes and cilia, α tubulin is modified by the posttranslational addition of an acetyl group, or acetylation. We discovered that acetylated tubulin in microtubules interacts with the membrane sphingolipid, ceramide.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are secreted by eukaryotic cells and serve as carriers for a variety of cell signaling factors, including RNAs, proteins, and lipids. We described a unique population of EVs, the membrane of which is highly enriched with the sphingolipid ceramide. We suggested that ceramide in the EV membrane is organized in ceramide-rich platforms (CRPs), a type of lipid raft that mediates interaction of ceramide with ceramide-associated proteins (CAPs).
View Article and Find Full Text PDFActa Neuropathol Commun
April 2020
Amyloid-β (Aβ) associates with extracellular vesicles termed exosomes. It is not clear whether and how exosomes modulate Aβ neurotoxicity in Alzheimer's disease (AD). We show here that brain tissue and serum from the transgenic mouse model of familial AD (5xFAD) and serum from AD patients contains ceramide-enriched and astrocyte-derived exosomes (termed astrosomes) that are associated with Aβ.
View Article and Find Full Text PDFCeramide-rich platforms (CRPs) mediate association of proteins with the sphingolipid ceramide and may regulate protein interaction in membrane contact sites to the cytoskeleton, organelles, and infectious pathogens. However, visualization of ceramide association to proteins is one of the greatest challenges in understanding the cell biology of ceramide. Here we introduce a novel labeling technique for ceramide-associated proteins (CAPs) by combining photoactivated cross-linking of a bioorthogonal and bifunctional ceramide analog, pacFACer with proximity ligation assays (PLAs).
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
October 2019
The sphingolipid ceramide regulates beta-oxidation of medium and long chain fatty acids in mitochondria. It is not known whether it also regulates oxidation of very long chain fatty acids (VLCFAs) in peroxisomes. Using affinity chromatography, co-immunoprecipitation, and proximity ligation assays we discovered that ceramide interacts with Hsd17b4, an enzyme critical for peroxisomal VLCFA oxidation and docosahexaenoic acid (DHA) generation.
View Article and Find Full Text PDFAccumulating evidence indicates that neuroinflammation contributes to the pathogenesis and exacerbation of neurodegenerative disorders, such as Alzheimer's disease (AD). Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid that regulates many pathophysiological processes including inflammation. We present evidence here that the spinster homolog 2 (Spns2), a S1P transporter, promotes microglia pro-inflammatory activation in vitro and in vivo.
View Article and Find Full Text PDFFor many decades, research on sphingolipids associated with neurodegenerative disease focused on alterations in glycosphingolipids, particularly glycosylceramides (cerebrosides), sulfatides, and gangliosides. This seemed quite natural since many of these glycolipids are constituents of myelin and accumulated in lipid storage diseases (sphingolipidoses) resulting from enzyme deficiencies in glycolipid metabolism. With the advent of recognizing ceramide and its derivative, sphingosine-1-phosphate (S1P), as key players in lipid cell signaling and regulation of cell death and survival, research focus shifted toward these two sphingolipids.
View Article and Find Full Text PDFSphingolipids are key signaling lipids in cancer. Genome-wide studies have identified neutral SMase-2 (nSMase2), an enzyme generating ceramide from SM, as a potential repressor for hepatocellular carcinoma. However, little is known about the sphingolipids regulated by nSMase2 and their roles in liver tumor development.
View Article and Find Full Text PDFThe ovariectomized (OVX) mouse model has been widely accepted to be suitable for the study of postmenopausal osteoporosis. However, whether C57BL/6J mice, a commonly used genetic background mouse strain, is an appropriate model for postmenopausal osteoporosis remains controversial. The present study investigated the effect of the OVX model on alterations in bone density and microarchitecture in C57BL/6J female mice of different ages.
View Article and Find Full Text PDFWe reported that amyloid β peptide (Aβ) activated neutral SMase 2 (nSMase2), thereby increasing the concentration of the sphingolipid ceramide in astrocytes. Here, we show that Aβ induced mitochondrial fragmentation in wild-type astrocytes, but not in nSMase2-deficient cells or astrocytes treated with fumonisin B1 (FB1), an inhibitor of ceramide synthases. Unexpectedly, ceramide depletion was concurrent with rapid movements of mitochondria, indicating an unknown function of ceramide for mitochondria.
View Article and Find Full Text PDFBioactive sphingolipids are important regulators for stem cell survival and differentiation. Most recently, we have coined the term "morphogenetic lipids" for sphingolipids that regulate stem cells during embryonic and postnatal development. The sphingolipid ceramide and its derivative, sphingosine-1-phosphate (S1P), can act synergistically as well as antagonistically on embryonic stem (ES) cell differentiation.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a demyelinating disorder characterized by massive neurodegeneration and profound axonal loss. Since myelin is enriched with sphingolipids and some of them display toxicity, biological function of sphingolipids in demyelination has been investigated in MS brain tissues. An elevation of sphingosine with a decrease in monoglycosylceramide and psychosine (myelin markers) was observed in MS white matter and plaque compared to normal brain tissue.
View Article and Find Full Text PDFExtracellular vesicles (EVs), particularly exosomes, have emerged in the last 10 years as a new player in the progression of Alzheimer's disease (AD) with high potential for being useful as a diagnostic and treatment tool. Exosomes and other EVs are enriched with the sphingolipid ceramide as well as other more complex glycosphingolipids such as gangliosides. At least a subpopulation of exosomes requires neutral sphingomyelinase activity for their biogenesis and secretion.
View Article and Find Full Text PDFUnlabelled: Recent evidence implicates exosomes in the aggregation of Aβ and spreading of tau in Alzheimer's disease. In neural cells, exosome formation can be blocked by inhibition or silencing of neutral sphingomyelinase-2 (nSMase2). We generated genetically nSMase2-deficient 5XFAD mice (fro;5XFAD) to assess AD-related pathology in a mouse model with consistently reduced ceramide generation.
View Article and Find Full Text PDFCilia are important organelles formed by cell membrane protrusions; however, little is known about their regulation by membrane lipids. We characterize a novel activation mechanism for glycogen synthase kinase-3 (GSK3) by the sphingolipids phytoceramide and ceramide that is critical for ciliogenesis in Chlamydomonas and murine ependymal cells, respectively. We show for the first time that Chlamydomonas expresses serine palmitoyl transferase (SPT), the first enzyme in (phyto)ceramide biosynthesis.
View Article and Find Full Text PDFAutologous osteochondral transplantation (AOT) is a method for articular cartilage repair. However, several disadvantages of this method have been reported, such as transplanted cartilage degeneration and the lack of a connection between the grafted and adjacent cartilage tissues. To evaluate the effect of intra-articular administration of trichostatin A (TSA) on AOT, we conducted a case control study in a rabbit model.
View Article and Find Full Text PDFMany breast cancer cells acquire multidrug resistance (MDR) mediated by ABC transporters such as breast cancer resistance protein (BCRP/ABCG2). Here we show that incubation of human breast cancer MDA-MB-231 cells with farnesoid X receptor antagonist guggulsterone (gug) and retinoid X receptor agonist bexarotene (bex) elevated ceramide, a sphingolipid known to induce exosome secretion. The gug+bex combination reduced cellular levels of BCRP to 20% of control cells by inducing its association and secretion with exosomes.
View Article and Find Full Text PDFWe present evidence that 5XFAD Alzheimer's disease model mice develop an age-dependent increase in antibodies against ceramide, suggesting involvement of autoimmunity against ceramide in Alzheimer's disease pathology. To test this, we increased serum anti-ceramide IgG (2-fold) by ceramide administration and analyzed amyloid plaque formation in 5XFAD mice. There were no differences in soluble or total amyloid-β levels.
View Article and Find Full Text PDFThe sphingosine-1-phosphate (S1P) transporter Spns2 regulates myocardial precursor migration in zebrafish and lymphocyte trafficking in mice. However, its function in cancer has not been investigated. We show here that ectopic Spns2 expression induced apoptosis and its knockdown enhanced cell migration in non-small cell lung cancer (NSCLC) cells.
View Article and Find Full Text PDFStress adaptation effect provides cell protection against ischemia induced apoptosis. Whether this mechanism prevents other types of cell death in stroke is not well studied. This is an important question for regenerative medicine to treat stroke since other types of cell death such as necrosis are also prominent in the stroke brain apart from apoptosis.
View Article and Find Full Text PDFWe show here that human embryonic stem (ES) and induced pluripotent stem cell-derived neuroprogenitors (NPs) develop primary cilia. Ciliogenesis depends on the sphingolipid ceramide and its interaction with atypical PKC (aPKC), both of which distribute to the primary cilium and the apicolateral cell membrane in NP rosettes. Neural differentiation of human ES cells to NPs is concurrent with a threefold elevation of ceramide-in particular, saturated, long-chain C16:0 ceramide (N-palmitoyl sphingosine) and nonsaturated, very long chain C24:1 ceramide (N-nervonoyl sphingosine).
View Article and Find Full Text PDFWe present evidence here that exosomes stimulate aggregation of amyloid beta (Aβ)1-42 in vitro and in vivo and interfere with uptake of Aβ by primary cultured astrocytes and microglia in vitro. Exosome secretion is prevented by the inhibition of neutral sphingomyelinase 2 (nSMase2), a key regulatory enzyme generating ceramide from sphingomyelin, with GW4869. Using the 5XFAD mouse, we show that intraperitoneal injection of GW4869 reduces the levels of brain and serum exosomes, brain ceramide, and Aβ1-42 plaque load.
View Article and Find Full Text PDFAlternative pre-mRNA splicing yields functionally distinct splice variants in regulating normal cell differentiation as well as cancer development. The putative tumor suppressor gene GT198 (PSMC3IP), encoding a protein also known as TBPIP and Hop2, has been shown to regulate steroid hormone receptor-mediated transcription and to stimulate homologous recombination in DNA repair. Here, we have identified 6 distinct GT198 splice variant transcripts generated by alternative promoter usage or alternative splicing.
View Article and Find Full Text PDFDose Response
August 2013
Although the adult human brain has a small number of neural stem cells, they are insufficient to repair the damaged brain to achieve significant functional recovery for neurodegenerative diseases and stroke. Stem cell therapy, by either enhancing endogenous neurogenesis, or transplanting stem cells, has been regarded as a promising solution. However, the harsh environment of the diseased brain posts a severe threat to the survival and correct differentiation of those new stem cells.
View Article and Find Full Text PDFWe show that in Madin-Darby canine kidney (MDCK) cells, an apical ceramide-enriched compartment (ACEC) at the base of primary cilia is colocalized with Rab11a. Ceramide and Rab11a vesicles isolated by magnetic sorting contain a highly similar profile of proteins (atypical protein kinase C [aPKC], Cdc42, Sec8, Rab11a, and Rab8) and ceramide species, suggesting the presence of a ciliogenic protein complex associated with ceramide at the ACEC. It is intriguing that C16 and C18 ceramide, although less abundant ceramide species in MDCK cells, are highly enriched in ceramide and Rab11a vesicles.
View Article and Find Full Text PDF