Front Endocrinol (Lausanne)
December 2024
In recent years, Electronic health records (EHR) has gradually become the mainstream in the healthcare field. However, due to the fact that EHR systems are provided by different vendors, data is dispersed and stored, which leads to the phenomenon of data silos, making medical information too fragmented and bringing some challenges to current medical services. Therefore, in view of the difficulties in sharing EHR between medical institutions, the risk of privacy leakage, and the lack of EHR usage control by patients, an EHR sharing model based on consortium blockchain is proposed in this paper.
View Article and Find Full Text PDFLong-term, real-time molecular monitoring in complex biological environments is critical for our ability to understand, prevent, diagnose, and manage human diseases. Aptamer-based electrochemical biosensors possess the promise due to their generalizability and a high degree of selectivity. Nevertheless, the operation of existing aptamer-based biosensors is limited to a few hours.
View Article and Find Full Text PDFBackground: Current guidelines for obesity prevention and control focus on body mass index (BMI) and rarely address central obesity. Few studies have been conducted on the association between normal-weight central obesity and the risk of diabetes mellitus (DM).
Methods: 26,825 participants from the National Health and Nutrition Examination Survey (NHANES) were included in our study.
Quantitative polymerase chain reaction as a powerful tool for DNA detection has been pivotal to a vast range of applications, including disease screening, food safety assessment, environmental monitoring, and many others. However, the essential target amplification step in combination with fluorescence readout poses a significant challenge to rapid and streamlined analysis. The discovery and engineering of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) technology have recently paved the way for a novel approach to nucleic acid detection, but the majority of current CRISPR-mediated DNA detection platforms are limited by insufficient sensitivity and still require target preamplification.
View Article and Find Full Text PDFSilicone elastomers, such as poly(dimethylsiloxane) (PDMS), have a broad range of applications in basic biomedical research and clinical medicine, ranging from the preparation of microfluidic devices for organs-on-chips and ventriculoperitoneal shunts for the treatment of hydrocephalus to implantable neural probes for neuropharmacology. Despite the importance, the protein adsorptions on silicone elastomers in these application environments represent a significant challenge. Surface coatings with slippery lubricants, inspired by the pitcher plants, have recently received much attention for reducing protein adsorptions.
View Article and Find Full Text PDFEnergy-efficient, miniaturized electronic ocean sensors for monitoring and recording various environmental parameters remain a challenge because conventional ocean sensors require high-pressure chambers and seals to survive the large hydrostatic pressure and harsh ocean environment, which usually entail a high-power supply and large size of the sensor system. Herein, we introduce soft, pressure-tolerant, flexible electronic sensors that can operate under large hydrostatic pressure and salinity environments, thereby eliminating the need for pressure chambers and reducing the power consumption and sensor size. Using resistive temperature and conductivity (salinity) sensors as an example for demonstration, the soft sensors are made of lithographically patterned metal thin films (100 nm) encapsulated with soft oil-infused elastomers and tested in a customized pressure vessel with well-controlled pressure and temperature conditions.
View Article and Find Full Text PDFNeurochemical corelease has received much attention in understanding brain activity and cognition. Despite many attempts, the multiplexed monitoring of coreleased neurochemicals with spatiotemporal precision and minimal crosstalk using existing methods remains challenging. Here, we report a soft neural probe for multiplexed neurochemical monitoring via the electrografting-assisted site-selective functionalization of aptamers on graphene field-effect transistors (G-FETs).
View Article and Find Full Text PDFThe clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have recently received notable attention for their applications in nucleic acid detection. Despite many attempts, the majority of current CRISPR-based biosensors in infectious respiratory disease diagnostic applications still require target preamplifications. This study reports a new biosensor for amplification-free nucleic acid detection via harnessing the trans-cleavage mechanism of Cas13a and ultrasensitive graphene field-effect transistors (gFETs).
View Article and Find Full Text PDFThe real-time monitoring of neurochemical release plays a critical role in understanding the biochemical process of the complex nervous system. Current technologies for such applications, including microdialysis and fast-scan cyclic voltammetry, suffer from limited spatiotemporal resolution or poor selectivity. Here, we report a soft implantable aptamer-graphene microtransistor probe for real-time monitoring of neurochemical release.
View Article and Find Full Text PDFMicrofluidic devices are gaining extensive interest due to their potential applications in wide-ranging areas, including lab-on-a-chip devices, fluid delivery, and artificial vascular networks. Most current microfluidic devices are in a planar design with fixed configurations once formed, which limits their applications such as in engineered vascular networks in biology and programmable drug delivery systems. Here, shape-programmable three-dimensional (3D) microfluidic structures, which are assembled from a bilayer of channel-embedded polydimethylsiloxane (PDMS) and shape-memory polymers (SMPs) via compressive buckling, are reported.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2021
Encapsulation materials play an important role in many applications including wearable electronics, medical devices, underwater robotics, marine skin tagging system, food packaging, and energy conversation and storage devices. To date, all the encapsulation materials, including polymer layers and inorganic materials, are materials. These solid materials suffer from limited barrier lifetimes due to pinholes, cracks, and nanopores or from complicated fabrication processes and limited stretchability for interfacing with complex 3D surfaces.
View Article and Find Full Text PDFElectrolytes play a pivotal role in regulating cardiovascular functions, hydration, and muscle activation. The current standards for monitoring electrolytes involve periodic sampling of blood and measurements using laboratory techniques, which are often uncomfortable/inconvenient to the subjects and add considerable expense to the management of their underlying disease conditions. The wide range of electrolytes in skin interstitial fluids (ISFs) and their correlations with those in plasma create exciting opportunities for applications such as electrolyte and circadian metabolism monitoring.
View Article and Find Full Text PDFThe existence of bacteria is a great threat to food safety. Volatile compounds secreted by bacteria during their metabolic process can be dissected to evaluate bacterial contamination. Indole, as a major volatile molecule released by (), was chosen to examine the presence of in this research.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
April 2021
This study developed an in-field analytical technique for food samples by integrating filtration into a surface-enhanced Raman spectroscopy (SERS) microchip. This microchip embedded a filter membrane in the chip inlet to eliminate interfering particulates and enrich target analytes. The design and geometry of the channel were optimised by finite-elemental method (FEM) to tailor variations of flow velocity (within 0-24 μL/s) and facilitate efficient mixing of the filtrate with nanoparticles in two steps.
View Article and Find Full Text PDFA nanocomposite based on nanofibrillar cellulose (NFC) coated with gold-silver (core-shell) nanoparticles (Au@Ag NPs) was developed as a novel surface-enhanced Raman spectroscopy (SERS) substrate. SERS performance of NFC/Au@Ag NP nanocomposite was tested by 4-mercaptobenzoic acid. The cellulose nanofibril network was a suitable platform that allowed Au@Ag NPs to be evenly distributed and stabilized over the substrate, providing more SERS hotspots for the measurement.
View Article and Find Full Text PDFThe misfolding of amyloid beta (Aβ) is one of the predominant hallmarks in the pathology of Alzheimer's disease (AD). In this study, we showed that the formation of the Aβ ion channel on the membrane depended on the cholesterol concentration. From a mechanical aspect, we found that cholesterol levels affected the stability and assembly of lipid bilayers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2019
Pharmacology and optogenetics are widely used in neuroscience research to study the central and peripheral nervous systems. While both approaches allow for sophisticated studies of neural circuitry, continued advances are, in part, hampered by technology limitations associated with requirements for physical tethers that connect external equipment to rigid probes inserted into delicate regions of the brain. The results can lead to tissue damage and alterations in behavioral tasks and natural movements, with additional difficulties in use for studies that involve social interactions and/or motions in complex 3-dimensional environments.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2020
In this study, by coupling benzothiazole and spiropyrans, three fluorescent probes HBT-pH 1, HBT-pH 2, and HBT-pH 3 were developed for pH variation monitoring. All these probes exhibited remarkable changes of absorption and emission accompanying its protonation under acidic conditions. HBT-pH 1 exhibited OFF-ON response when pH value was changed from 12.
View Article and Find Full Text PDFZhongguo Zhen Jiu
January 2019
Objective: To summarize the indication rules of points (bilateral BL 31, 32, 33 and 34) based on the clinical literature research.
Methods: The relevant articles of clinical research on the treatment with points were retrieved electronically from CNKI (1979 to 2017), VIP (1989 to 2017), CBM (1979 to 2017) and PubMed (1966 to 2017). The paper were collected and analyzed.
Foodborne illness is correlated with the existence of infectious pathogens such as bacteria in food and drinking water. Probe-modified graphene field effect transistors (G-FETs) have been shown to be suitable for () detection. Here, the G-FETs for bacterial detection are modeled and simulated with COMSOL Multiphysics to understand the operation of the biosensors.
View Article and Find Full Text PDFBACKGROUND The aim of this study was to investigate the effects of sulforaphane (SFN), a natural isothiocyanate compound, in a rabbit ascending aortic cerclage model of chronic heart failure (CHF). MATERIAL AND METHODS Thirty New Zealand White rabbits were divided into the sham operation group (n=10), the CHF group (n=10), and the CHF + SFN group (n=10) treated with subcutaneous SFN (0.5 mg/kg) for five days per week for 12 weeks.
View Article and Find Full Text PDFThis study reports biosensing using graphene field-effect transistors with the aid of pyrene-tagged DNA aptamers, which exhibit excellent selectivity, affinity, and stability for Escherichia coli (E. coli) detection. The aptamer is employed as the sensing probe due to its advantages such as high stability and high affinity toward small molecules and even whole cells.
View Article and Find Full Text PDFIn this paper, a new coumarin-based fluorescent probe for hydrazine was rationally designed and successfully synthesized based on the Gabriel reaction. This novel probe enabled highly sensitive and selective detection of hydrazine. The detection limit was 43.
View Article and Find Full Text PDF