Publications by authors named "Guangfu Luo"

How microzooplanktonic ciliate adaptative strategies differ across diatom bloom and non-diatom bloom areas in the Arctic Ocean remains poorly documented. To address this gap, two different situations were categorized in the Arctic Ocean at summer 2023: diatom bloom stations (DBS) (genus Thalassiosira, chain-like) and non-diatom bloom stations (nDBS). Total abundance of ciliate at 3 m and 25 m in DBS was 2.

View Article and Find Full Text PDF

The cycling stability of a thin zinc anode under high zinc utilization has a critical impact on the overall energy density and practical lifetime of zinc ion batteries. In this study, an ion sieve protection layer (ZnSnF@Zn) was constructed on the surface of a zinc anode by chemical replacement. The ion sieve facilitated the transport and desolvation of zinc ions at the anode/electrolyte interface, reduced the zinc deposition overpotential, and inhibited side reactions.

View Article and Find Full Text PDF
Article Synopsis
  • Transition state calculation is essential for understanding dynamic processes in solids, but results at 0 K often misrepresent behaviors at higher temperatures, with unknown error margins.
  • This study evaluates temperature effects like lattice expansion, lattice vibration, electron excitation, and band-edge shift on defect diffusion using first-principles calculations.
  • Findings reveal that lattice expansion and vibration significantly impact defect formation and hopping energies, while the electron excitation has minor effects, with varying attempt frequencies in different materials, leading to more accurate predictions of dynamical processes at high temperatures.
View Article and Find Full Text PDF

Although hard carbon (HC) demonstrates superior initial Coulombic efficiency, cycling durability, and rate capability in ether-based electrolytes compared to ester-based electrolytes for sodium-ion batteries (SIBs), the underlying mechanisms responsible for these disparities remain largely unexplored. Herein, ex situ electron paramagnetic resonance (EPR) spectra and in situ Raman spectroscopy are combined to investigate the Na storage mechanism of HC under different electrolytes. Through deconvolving the EPR signals of Na in HC, quasi-metallic-Na is successfully differentiated from adsorbed-Na.

View Article and Find Full Text PDF

Searching for electrocatalysts for the electrochemical CO reduction reaction (e-CORR) with high selectivity and stability remains a significant challenge. In this study, we design a Cu-CuInO composite with stable states of Cu/Cu by electrochemically depositing indium onto CuCl-decorated Cu foil. The catalyst displays superior selectivity toward the CO product, with a maximal Faraday efficiency of 89% at -0.

View Article and Find Full Text PDF

Elemental 2D materials (E2DMs) have been attracting considerable attention owing to their chemical simplicity and excellent/exotic properties. However, the lack of robust chemical synthetic methods seriously limits their potential. Here, a surfactant-free liquid-phase synthesis of high-quality 2D tellurium is reported based on ultrasonication-assisted exfoliation of metastable 1T'-MoTe.

View Article and Find Full Text PDF

Attaining high reversibility of the electrodes and electrolyte is essential for the longevity of secondary batteries. Rechargeable zinc-air batteries (RZABs), however, encounter drastic irreversible changes in the zinc anodes and air cathodes during cycling. To uncover the mechanisms of reversibility loss in RZABs, we investigate the evolution of the zinc anode, alkaline electrolyte, and air electrode through experiments and first-principles calculations.

View Article and Find Full Text PDF

A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive, long-duration storage, the battery demands a thick Zn deposit in a porous framework, whose heterogeneity triggers frequent dendrite formation and jeopardizes the stability of the battery. Here, Cu foam is transferred into a hierarchical nanoporous electrode to homogenize the deposition.

View Article and Find Full Text PDF

Doping of perovskite semiconductors and passivation of their grain boundaries remain challenging but essential for advancing high-efficiency perovskite solar cells. Particularly, it is crucial to build perovskite/indium tin oxide (ITO) Schottky contact based inverted devices without predepositing a layer of hole-transport material. Here we report a dimethylacridine-based molecular doping process used to construct a well-matched p-perovskite/ITO contact, along with all-round passivation of grain boundaries, achieving a certified power conversion efficiency (PCE) of 25.

View Article and Find Full Text PDF

High-concentrated non-flammable electrolytes (HCNFE) in lithium metal batteries prevent thermal runaway accidents, but the microstructure of their solid electrolyte interphase (SEI) remains largely unexplored, due to the lack of direct imaging tools. Herein, cryo-HRTEM is applied to directly visualize the native state of SEI at the atomic scale. In HCNFE, SEI has a uniform laminated crystalline-amorphous structure that can prevent further reaction between the electrolyte and lithium.

View Article and Find Full Text PDF

High-temperature polymer dielectrics have broad application prospects in next-generation microelectronics and electrical power systems. However, the capacitive energy densities of dielectric polymers at elevated temperatures are severely limited by carrier excitation and transport. Herein, a molecular engineering strategy is presented to regulate the bulk-limited conduction in the polymer by bonding amino polyhedral oligomeric silsesquioxane (NH -POSS) with the chain ends of polyimide (PI).

View Article and Find Full Text PDF

Minimum energy path (MEP) search is a vital but often very time-consuming method to predict the transition states of versatile dynamic processes in chemistry, physics, and materials science. In this study, we reveal that the largely displaced atoms in the MEP structures maintain transient chemical bond lengths resembling those of the same type in the stable initial and final states. Based on this discovery, we propose an adaptive semirigid body approximation (ASBA) to construct a physically reasonable initial guess for the MEP structures, which can be further optimized by the nudged elastic band method.

View Article and Find Full Text PDF

Despite the planktonic ciliate importance in the microzooplankton compartment, their full-depth vertical distribution in the Arctic Ocean was poorly documented as well as the related variations in different water masses. The full-depth community structure of planktonic ciliates was investigated in the Arctic Ocean during summer 2021. The ciliate abundance and biomass decreased rapidly from 200 m to bottom.

View Article and Find Full Text PDF

Composition modulation and edge enrichment are established protocols to steer the electronic structures and catalytic activities of two-dimensional (2D) materials. It is believed that a heteroatom enhances the catalytic performance by activating the chemically inert basal plane of 2D crystals. However, the edge and basal plane have inherently different electronic states, and how the dopants affect the edge activity remains ambiguous.

View Article and Find Full Text PDF

Two-dimensional (2D) transition metal dihalides (TMDHs) have been receiving extensive attention due to their diversified magnetic properties and promising applications in spintronics. However, controlled growth of 2D TMDHs remains challenging owing to their extreme sensitivity to atmospheric moisture. Herein, using a home-built nitrogen-filled interconnected glovebox system, a universal chemical vapor deposition synthesis route of high-quality 2D TMDH flakes (1T-FeCl, FeBr, VCl, and VBr) by reduction of their trihalide counterparts is developed.

View Article and Find Full Text PDF

Polymer film capacitors have been widely used in electronics and electrical power systems due to their advantages of high power densities, fast charge-discharge speed, and great stability. However, the exponential increase of electrical conduction with temperature and applied electric field substantially degrades the capacitive performance of dielectric polymers at elevated temperatures. Here, the first example of controlling the energy level of charge traps in all-organic crosslinked polymers by tailoring molecular structures that significantly inhibit high-field high-temperature conduction loss, which largely differs from current approaches based on the introduction of inorganic fillers, is reported.

View Article and Find Full Text PDF

Potassium-ion batteries (PIBs) have been regarded as a competitive alternative for lithium-ion batteries, owing to the natural abundance, low cost, and similar rocking-chair working mechanism of potassium element. However, it is challenging to simultaneously prepare suitable potassium ion anode materials of low voltage plateau, high capacity, and long cycle life. In this work, onion-like soft carbon (OLSC) of high heteroatom content is prepared by using solvent-sensitive self-assembly properties of asphaltene molecules.

View Article and Find Full Text PDF

Virioplankton and picoplankton are the most abundant marine biological entities on earth and mediate biogeochemical cycles in the Southern Ocean. However, understanding of their distribution and relationships with environmental factors is lacking. Here, we report on their distribution and relationships with environmental factors at 48 stations from 112.

View Article and Find Full Text PDF

The emerging nonlayered 2D materials (NL2DMs) are sparking immense interest due to their fascinating physicochemical properties and enhanced performance in many applications. NL2DMs are particularly favored in catalytic applications owing to the extremely large surface area and low-coordinated surface atoms. However, the synthesis of NL2DMs is complex because their crystals are held together by strong isotropic covalent bonds.

View Article and Find Full Text PDF

Monolayer, bilayer, and bulk BSi are studied to explore their application potential as anode materials of Li-ion batteries. Structural stability and metallicity are obtained in each case. The Li storage capacities of monolayer and bilayer BSi are 1378 and 689 mAh g , respectively, with average open circuit voltages of 1.

View Article and Find Full Text PDF

The quantum relaxation time of electrons in condensed matters is an important physical property, but its direct measurement has been elusive for a century. Here, we report a breakthrough that allows direct determination of quantum relaxation time at zero and non-zero frequencies using optical measurement. Through dielectric loss function, we connect bound electron effects to the physical parameters of plasma resonance and find an extra term of quantum relaxation time from inelastic scattering between bound electrons and conduction electrons at non-zero frequencies.

View Article and Find Full Text PDF

Background: Dimethyl sulfide (DMS) is the dominant volatile organic sulfur in global oceans. The predominant source of oceanic DMS is the cleavage of dimethylsulfoniopropionate (DMSP), which can be produced by marine bacteria and phytoplankton. Polar oceans, which represent about one fifth of Earth's surface, contribute significantly to the global oceanic DMS sea-air flux.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how lithium can be effectively encapsulated within nanocapsules, specifically carbon nanotubes, to improve lithium metal anode performance.
  • Using in situ transmission electron microscopy, researchers explore the growth patterns of lithium in confined spaces and how these patterns differ from traditional single-crystal dendrite growth.
  • The findings emphasize the importance of nitrogen/oxygen doping in enhancing lithium's interaction with the carbon shells, facilitating its movement, and achieving stable encapsulation through energy-efficient processes.
View Article and Find Full Text PDF

The formation of lithium dendrites remains one of the biggest challenges of commercializing rechargeable lithium metal batteries. Here, we combine classical molecular dynamics simulations and first-principles calculations to study the possibility of utilizing modified graphdiyne film, which possesses intrinsic nanopores, as a stable "nanosieve" to reduce the lithium dendrites on anode. We find that through a mechanism resembling the hydraulic jump in fluid dynamics, graphdiyne film can enforce the concentration uniformity of lithium ions even under a highly non-uniform electric field and thus can induce a uniform nucleation of lithium metal.

View Article and Find Full Text PDF