Publications by authors named "Guangfei Zhou"

Article Synopsis
  • A study identified 69 quantitative trait nucleotides (QTNs) related to maize resistance against Gibberella ear rot (GER), with 18 of these being novel discoveries.
  • Four candidate genes linked to susceptibility to GER were predicted based on gene expression data from 334 maize inbred lines phenotyped in various environments.
  • The researchers also developed four PCR markers for these candidate genes, which could aid in improving genetic resistance to GER in maize cultivars.
View Article and Find Full Text PDF

Background: tRF-RNA-a representative of non-coding RNA (ncRNA)-is a precursor or fragment of mature tRNA and plays a crucial regulatory role in the occurrence and development of cancer. There is currently little research on tRF-RNA as a diagnostic marker in cancer, especially for NSCLC from serum exosomes.

Method: Serum exosomes were successfully extracted from serum; their physical morphology was captured by transmission electron microscopy (TEM); appropriate particle size detection was performed using qNano; surface labeling was verified through western blotting.

View Article and Find Full Text PDF

Ear tip-barrenness (ETB), which results from aborted kernels or infertile florets at the ear tip, is an undesirable factor affecting the yield and quality of waxy maize. To uncover the genetic basis of ETB, a genome-wide association study (GWAS) was conducted using the genotype with 27,354 SNPs and phenotype with three environments. Five SNPs that distributed on chromosomes 1, 3 and 6, were identified to be significantly associated with ETB based on the threshold of false discovery rate (FDR) at 0.

View Article and Find Full Text PDF

Kernel moisture content at the harvest stage (KMC) is an important trait that affects the mechanical harvesting of maize grain, and the identification of genetic loci for KMC is beneficial for maize molecular breeding. In this study, we performed a multi-locus genome-wide association study (ML-GWAS) to identify quantitative trait nucleotides (QTNs) for KMC using an association mapping panel of 251 maize inbred lines that were genotyped with an Affymetrix CGMB56K SNP Array and phenotypically evaluated in three environments. Ninety-eight QTNs for KMC were detected using six ML-GWAS models (mrMLM, FASTmrMLM, FASTmrEMMA, PLARmEB, PKWmEB, and ISIS EM-BLASSO).

View Article and Find Full Text PDF

Gibberella ear rot (GER), a prevalent disease caused by , can result in significant yield loss and carcinogenic mycotoxin contamination in maize worldwide. However, only a few quantitative trait loci (QTLs) for GER resistance have been reported. In this study, we evaluated a Chinese recombinant inbred line (RIL) population comprising 204 lines, developed from a cross between a resistant parent DH4866 and a susceptible line T877, in three field trials under artificial inoculation with .

View Article and Find Full Text PDF

Yield improvement is a top priority for maize breeding. Kernel size and weight are important determinants of maize grain yield. In this study, a recombinant inbred line (RIL) population and an association panel were used to identify quantitative trait loci (QTLs) for four maize kernel-related traits: kernel length, width, thickness and 100-kernel weight.

View Article and Find Full Text PDF

Kernel moisture content at harvest stage (KMC) is an important factor affecting maize production, especially for mechanical harvesting. We investigated the genetic basis of KMC using an association panel comprising of 144 maize inbred lines that were phenotypically evaluated at two field trial locations. Significant positive or negative correlations were identified between KMC and a series of other agronomic traits, indicating that KMC is associated with other such traits.

View Article and Find Full Text PDF

Waxy maize (Zea mays L. var. ceratina) is an important vegetable and economic crop that is thought to have originated from cultivated flint maize and most recently underwent divergence from common maize.

View Article and Find Full Text PDF