Objective: The present study investigated the functional neuroanatomy underlying negative and positive schemas towards the self and others in patients with early stage schizophrenia spectrum disorders (SSDs) using a task-based fMRI procedure.
Methods: This study included 50 patients with SSDs and 52 controls. The schema-evoking task consisted of four active conditions and neutral condition.
Altered resting-state functional connectivity (FC) of the amygdala (AMY) has been demonstrated to be implicated in schizophrenia (SZ) and attenuated psychosis syndrome (APS). Specifically, no prior work has investigated FC in individuals with APS using subregions of the AMY as seed regions of interest. The present study examined AMY subregion-based FC in individuals with APS and first-episode schizophrenia (FES) and healthy controls (HCs).
View Article and Find Full Text PDFBackground: The recent deep learning-based studies on the classification of schizophrenia (SCZ) using MRI data rely on manual extraction of feature vector, which destroys the 3D structure of MRI data. In order to both identify SCZ and find relevant biomarkers, preserving the 3D structure in classification pipeline is critical.
Objectives: The present study investigated whether the proposed 3D convolutional neural network (CNN) model produces higher accuracy compared to the support vector machine (SVM) and other 3D-CNN models in distinguishing individuals with SCZ spectrum disorders (SSDs) from healthy controls.