Publications by authors named "Guangdao Zhang"

Aplastic anaemia (AA) is a haematopoietic disorder caused by immune-mediated attack on haematopoietic stem cells (HSCs). Stem cell transplantation and immunosuppressive therapy remain the major treatment choice for AA patients but have limited benefits and undesired side effects. The aim of our study was to clarify the protective role of immunity of chronic intermittent hypobaric hypoxia (CIHH) and the underlying mechanism in AA.

View Article and Find Full Text PDF

Background: Ti6Al4V biomaterials combine with low-intensity pulsed ultrasound (LIPUS) has been reported with great bone regeneration capacity. It is important to better understand how LIPUS benefits bone microenvironment to seek for target of therapeutic medicine. Osteoclast differentiation plays a crucial role in bone resorption.

View Article and Find Full Text PDF

Mechanobiological stimuli, such as low-intensity pulsed ultrasound (LIPUS), have been shown to promote bone regeneration and fresh fracture repair, but the fundamental biophysical mechanisms involved remain elusive. Here, we propose that a mechanosensitive ion channel of Piezo1 plays a pivotal role in the noninvasive ultrasound-induced mechanical transduction pathway to trigger downstream cellular signal processes. This study aims to investigate the expression and role of Piezo1 in MC3T3-E1 cells after LIPUS treatment.

View Article and Find Full Text PDF

Background: Given their highly adjustable and predictable properties, three-dimensional(3D) printed geometrically ordered porous biomaterials offer unique opportunities as orthopedic implants. The performance of such biomaterials is, however, as much a result of the surface properties of the struts as it is of the 3D porous structure. In our previous study, we have investigated the performances of selective laser melted (SLM) Ti-6Al-4V scaffolds which are surface modified by the bioactive glass (BG) and mesoporous bioactive glass (MBG), respectively.

View Article and Find Full Text PDF

This study aimed to evaluate the effect of fluorine coated Mg alloy and clarify its mechanism in bone formation. We implanted the fluorine coated AZ31B Mg alloy screw (group F) in rabbit mandibular and femur in vivo. Untreated AZ31B Mg alloy screw (group A) and titanium screw (group T) were used as control.

View Article and Find Full Text PDF

In this study the loss of mechanical properties and the interface strength of coated AZ31B magnesium alloy (a magnesium-aluminum alloy) screws with surrounding host tissues were investigated and compared with non-coated AZ31B, degradable polymer and biostable titanium alloy screws in a rabbit animal model after 1, 4, 12 and 21weeks of implantation. The interface strength was evaluated in terms of the extraction torque required to back out the screws. The loss of mechanical properties over time was indicated by one-point bending load loss of the screws after these were extracted at different times.

View Article and Find Full Text PDF

Magnesium alloys were studied extensively as a class of biodegradable metallic materials for medical applications. In the present study, ZK60 magnesium alloy was considered as a candidate and the micro-arc oxidation (MAO) treatment was adopted in order to reduce the degradation rate of the alloy. The in vivo degradation behaviors and biological compatibilities of ZK60 alloys with and without MAO treatment were studied with a transcortical model in rabbits.

View Article and Find Full Text PDF

Purpose: To utilize the fluid shear stress to simulate occlusion trauma in vitro. Different density of FN was given to HPDLF and the amount of COX-2 mRNA of HPDLF was measured at different time.

Methods: Young healthy permanent teeth which were extracted for orthodontic treatment were collected.

View Article and Find Full Text PDF