Publications by authors named "Guangchun Shan"

Wet distillers grains, as a waste biomass with a large annual output, pose a threat to the environment and food industry. Herein, artificial humic acid (AHA) was first produced from wet distillers grains in a dual-stage microwave-assisted hydrothermal process. The influence of temperature on AHA's characteristics was investigated and compared with natural humic acid (NHA) and standard humic acid (SHA).

View Article and Find Full Text PDF

The nitrogen loss in composting is primarily driven by the transformation of organic nitrogen, yet the mechanisms underlying the degradation process remain incompletely understood. This study employed protein family domains (Pfams) analysis based on metagenomic sequencing to investigate the functional characteristics, key microorganisms, and environmental parameters influencing organic nitrogen degradation in chicken manure and pig manure composting. 154 Pfams associated with ammonification function were identified.

View Article and Find Full Text PDF

The organic matter molecular mechanism by which combined hydrothermal carbonization (co-HTC) of municipal sludge (MS) and agricultural wastes (rice husk, spent mushroom substrate, and wheat straw) reduces the inhibitory effects of aqueous phase (AP) products on pak choi (Brassica campestris L.) growth compared to HTC of MS alone is not clear. Fourier-transform ion cyclotron resonance mass spectrometry was used to characterize the differences in organic matter at the molecular level between AP from MS HTC alone (AP-MS) and AP from co-HTC of MS and agricultural waste (co-Aps).

View Article and Find Full Text PDF

Livestock manure is often contaminated with heavy metals (HMs) and HM resistance genes (HMRGs), which pollute the environment. In this study, we aimed to investigate the effects of the aqueous phase (AP) produced by hydrothermal carbonization (HTC) of sewage sludge (SS) alone and the AP produced by co-HTC of rice husk (RH) and SS (RH-SS) on humification, HM bioavailability, and HMRGs during chicken manure composting. RH-SS and SS increased the humic acid content of the compost products by 18.

View Article and Find Full Text PDF

The effects of aqueous phases (AP) formed from hydrothermal carbonation of sewage sludge (with or without rice husk) as moisture regulators of nitrogen metabolism pathways during composting are currently unclear. Macrogenomic analyses revealed that both APs resulted in notably changes in bacterial communities during composting; increased levels of nitrogen assimilation, nitrification, and denitrification metabolic pathways; and decreased levels of nitrogen mineralization metabolic pathways. Genes associated with nitrogen assimilation and mineralization accounted for 34-41% and 32-40% of the annotated reads related to nitrogen cycling during composting, respectively, representing them as the most abundant nitrogen metabolism processes.

View Article and Find Full Text PDF

The reduction of enhanced antibiotic resistance genes (ARGs) in compost is important to mitigate the risk of ARG transmission in agricultural production. Hydrochar is used in many applications as a functional carbon material with adsorption and catalytic properties. This study investigated the effects of hydrochar addition on bacterial communities, mobile genetic elements (MGEs), and ARGs in chicken manure composting.

View Article and Find Full Text PDF

This study investigated the effect of hydrochar addition on nitrogen (N) transformation, N functional genes, and humification during chicken manure composting. The addition of 10 % hydrochar reduced cumulative ammonia (NH) and nitrous oxide emissions by 55.24 % and 45.

View Article and Find Full Text PDF

Hydrothermal technology (HT) has received much attention in recent years as a process to convert wet organic waste into hydrochar. The aqueous phase (HTAP) produced by this process is still a burden and has become a bottleneck issue for HT process development. In this study, we provide the first investigation of the HTAP characteristics, phytotoxicity, and their correlation with persulfate (PS) (PS, 2.

View Article and Find Full Text PDF

Hydrothermal carbonization (HTC) is a promising carbon-neutral technology for converting sewage sludge (SS) and agricultural waste into energy. However, HTC-generated aqueous phase (AP) impedes the development of the former. This study investigated the potential of SS with rice husk (RH) and wheat straw (WS) co-HTC to form hydrochar and AP as substitutes for fuel and chemical fertilizer, respectively.

View Article and Find Full Text PDF

Hydrothermal carbonization (HTC) has been recognized as a promising sewage sludge (SS) treatment technology for effective pathogen elimination, bioenergy recovery, organic contaminant destruction and volume reduction. However, the solid product (hydrochar) of SS after HTC as fuel has the problems of high ash content, high nitrogen content and low calorific value. The aqueous phase (AP) produced is still considered a burden and has become a bottleneck in the development of HTC.

View Article and Find Full Text PDF

The objective of this study was to explore the relationships among physico-chemical parameters, dissolved organic matters (DOM), and bacterial community during composting to better understand composting performances. The results showed total Kjeldahl nitrogen (TKN) (57%), temperature (39%), and pH (3%) were main factors driving the succession of bacterial communities. Firmicutes was a crucial phylum degrading organic matters for DOM formation, whereas the aromaticity and humification of DOM were closely related to Luteimonas (R = 0.

View Article and Find Full Text PDF

As a heterogeneous fraction, dissolved organic matter (DOM) in a compost is the most active because of its direct supply of energy sources for microbes. Also, the transfer and distribution of heavy metals in the DOM fraction attract many attentions of researchers. To this end, the dynamics of humic acids (HA), fulvic acids (FA), hydrophobic neutrals (HoN), and hydrophilic (Hi) fractions derived from DOM was investigated in this study, and the transformation of different DOM subfractions and distribution of heavy metals during food waste and sugarcane leaves co-composting were assessed by excitation-emission matrix fluorescence (EEM-FL) and inductively coupled plasma mass spectrometry (ICP-MS), respectively.

View Article and Find Full Text PDF

The purpose of this research was to evaluate the properties and dynamic changes of humic acids (HA), fulvic acids (FA), hydrophobic neutrals (HoN), and hydrophilic (Hi) fractions of dissolved organic matter (DOM) during food waste and sugarcane leaves co-composting process. The pools of HA, FA, HoN, and Hi were separated from DOM by fractionation method, and characterized using spectroscopic (UV-vis, FTIR) and pyrolysis-GC/MS analyses. The least peaks in the HA pool were found in FTIR spectra with the simple structure in HA.

View Article and Find Full Text PDF

Composting is an effective method in treating solid organic wastes, in which dissolved organic matter (DOM) plays an important role in transformation of organic matter and microbial activity. Therefore, an understanding of the properties and evolution of DOM during composting is crucial. In this study, DOM was studied using elemental analysis, spectroscopic analysis (UV-vis, FTIR, and pyrolysis-GC/MS), and colloidal analysis during a 120-day composting.

View Article and Find Full Text PDF

For the purpose of evaluating the effect of flue gas desulphurization gypsum (FGDG) additive on characteristics and evolution of humic substance (HS) during composting, HS from composts with FGDG (CPG) and without FGDG (CP) were extracted and assessed with respect to their particle size, elemental analysis, FTIR and UV-vis spectroscopy, and the molecular composition of HS was characterized via pyrolysis-GC/MS as well. The particle size of HS ranged between 300 and 600nm, representing a bimodal distribution. As composting proceeded, the C/H of HS increased, and C/N decreased.

View Article and Find Full Text PDF

To investigate the impacts of flue gas desulphurization gypsum (FGDG) amendment on the nitrification and denitrification during composting, dairy manure and sugarcane pressmud co-composting with FGDG (CPG) and without FGDG (CP) were conducted in this work. The physico-chemical parameters and the copies of nitrification and denitrification functional genes with real-time quantitative polymerase chain reaction (qPCR) during composting were analyzed. FGDG amendment displayed an inhibitory effect on the copies of 16S rDNA and delayed the occurrence of the highest gene copies of amoA during composting.

View Article and Find Full Text PDF