Publications by authors named "Guangcheng Zhong"

Diabetic peripheral neuropathy (DPN) is the most prevalent microvascular complication of diabetes and Huangqi Guizhi Wuwu Decoction (HGWD) is frequently employed in classical Chinese medicine for treating DPN. This study aims to investigate the potential therapeutic targets and mechanisms of HGWD for treating DPN using network pharmacology and molecular docking methodologies. The intersection targets of DPN and HGWD were retrieved from the databases, with the resulting intersection targets being imported into the STRING database to construct the protein-protein interaction (PPI) network.

View Article and Find Full Text PDF

Central nervous system(CNS) disorders can significantly impact patients' daily lives, impairing their ability to work and imposing a substantial financial burden on their families. In recent years, the incidence of CNS diseases has shown a significant increase with the continuous improvement of the quality of life and the aging problem. Therefore, the search for new preventive and curative drugs has been a research hotspot for this group of diseases.

View Article and Find Full Text PDF
Article Synopsis
  • * There are currently no approved medications for VaD due to its complex causes, highlighting the urgent need for the development of new and effective treatments.
  • * Research suggests that apoptosis, a process of programmed cell death, plays a key role in VaD progression, with various natural compounds showing promise in protecting neurons and regulating apoptosis, but more clinical studies are needed to confirm their effectiveness and safety.
View Article and Find Full Text PDF

Exosomes, as membranous vesicles generated by multiple cell types and secreted to extracellular space, play a crucial role in a range of brain injury-related brain disorders by transporting diverse proteins, RNA, DNA fragments, and other functional substances. The nervous system's pathogenic mechanisms are complicated, involving pathological processes like as inflammation, apoptosis, oxidative stress, and autophagy, all of which result in blood-brain barrier damage, cognitive impairment, and even loss of normal motor function. Exosomes have been linked to the incidence and progression of brain disorders in recent research.

View Article and Find Full Text PDF

Neurodegenerative diseases encompass a collection of neurological disorders originating from the progressive degeneration of neurons, resulting in the dysfunction of neurons. Unfortunately, effective therapeutic interventions for these diseases are presently lacking. Copper (Cu), a crucial trace element within the human body, assumes a pivotal role in various biological metabolic processes, including energy metabolism, antioxidant defense, and neurotransmission.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is a global public health priority characterized by high mortality rates in adults and an increasing prevalence in aging populations worldwide. Despite significant advancements in comprehending the pathogenesis of AD since its initial report in 1907, there remains a lack of effective curative or preventive measures for the disease. In recent years, natural compounds sourced from diverse origins have garnered considerable attention as potential therapeutic agents for AD, owing to their anti-inflammatory, antioxidant, and neuroprotective properties.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is a prevalent global condition and a common precursor to liver cancer, yet there is currently no specific medication available for its treatment. Ginseng, renowned for its medicinal and dietary properties, has been utilized in NAFLD management, although the precise underlying mechanism remains elusive. To investigate the effectiveness of ginsenoside Rd, we employed mouse and cell models to induce NAFLD using high-fat diets, oleic acid, and palmitic acid.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder with no effective cure. Targeting endoplasmic reticulum (ER) stress pathway may offer a novel approach to ameliorate cognitive deficits in AD. Bushen-Yizhi formula (BSYZ), a traditional Chinese medicine (TCM) prescription, has shown potential benefits for AD.

View Article and Find Full Text PDF

Background: Kai-Xin-San (KXS) has been reported to have a good curative impact on dementia. The purpose of the study was to determine whether KXS might ameliorate cognitive deficits in APP/PS1 mice and to evaluate its neuroprotective mechanism.

Methods: APP/PS1 mice were employed as an AD animal model; Aβ and KXS-containing serum were used in HT22 cells.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a critical neurodegenerative disease that manifests as progressive intellectual decline and is pathologically characterized by a progressive loss of neurons in the brain. Despite extensive research on this topic, the pathogenesis of AD is not fully understood, while the beta-amyloid (A) hypothesis remains the dominant one and only a few symptomatic drugs are approved for the treatment of AD. Ginseng has been widely reported as an effective herbal medicine for the treatment of neurodegenerative diseases such as dementia.

View Article and Find Full Text PDF

Acetaminophen (APAP) intake leads to excessive NAPQI deposition, stimulating inflammatory and oxidative stress and causing fatal liver injury. However, the detailed molecular mechanism involved is unknown, and effective therapeutic approaches remain insufficient. In this study, we discovered that treatment with ginsenoside Rc can prevent the inflammatory response caused by APAP and oxidative stress in mouse primary hepatocytes (MPHs), along with the corresponding changes in related genes.

View Article and Find Full Text PDF

Background & Aims: Excessive acetaminophen (APAP) intake causes oxidative stress and inflammation, leading to fatal hepatotoxicity; however, the mechanism remains unclear. This study aims to explore the protective effects and detailed mechanisms of sirtuin 6 (SIRT6) in the defense against APAP-induced hepatotoxicity.

Methods: Hepatocyte-specific SIRT6 knockout mice, farnesoid X receptor (FXR) knockout mice, and mice with genetic or pharmacological activation of SIRT6 were subjected to APAP to evaluate the critical role of SIRT6 in the pathogenesis of acute liver injury.

View Article and Find Full Text PDF