Background: Recently, serotype 4 fowl adenovirus (FAdV-4) has spread widely and caused huge economic loss to poultry industry. However, little is known about the molecular pathogenesis of FAdV-4. Fiber protein is thought to be vital for its infection and pathogenesis.
View Article and Find Full Text PDFAs a major causative agent for hepatitis-hydropericardium syndrome (HPS) in chickens, serotype 4 fowl adenovirus (FAdV-4) has caused huge economic losses in the poultry industry globally. However, there is no commercial diagnostic test for FAdV-4 antigens. To generate a rapid approach for specific detection of FAdV-4, a monoclonal antibodies (mAbs)-based sandwich ELISA was developed.
View Article and Find Full Text PDFIn this research, four monoclonal antibodies (mAbs) were first generated as an immunogen by using the GST fusion protein that carries the fusion peptide and helix A derived from H7N9 influenza A virus (IAV). These mAbs could react with HA of H7N9, H3N2, and H9N2 with neutralizing activity. A novel linear epitope recognized by these mAbs was identified by peptide-based ELISA, and this epitope was located in TAADYKSTQSAIDQITGKLN at the C terminus of the helix A of H7N9.
View Article and Find Full Text PDFA recent outbreak of hepatitis-hydropericardium syndrome caused by serotype 4 fowl adenovirus (FAdV-4) has resulted in significant economic losses to the poultry industry worldwide. However, little is known about the molecular pathogenesis of FAdV-4. In this study, a novel monoclonal antibody (mAb) targeting the fiber-2 protein of FAdV-4 was generated, mAb 3C2.
View Article and Find Full Text PDF