Publications by authors named "Guangchao Chen"

Proper risk assessment of the many new nanoforms (NFs) that are currently being developed and marketed is hindered by constraints in time and resources for testing their fate and (eco) toxicity profile. This problem has also been encountered in conventional chemical risk assessments, where the definition of related chemical groups can facilitate risk assessment for all class members. Whereas grouping and read-across methods are well established, such approaches are in the early stages of development for NFs.

View Article and Find Full Text PDF
Article Synopsis
  • - Macroautophagy is a complex process that can lead to cell death, influenced by various cell types and stressors, while ferroptosis is a specific kind of cell death related to lipid damage and iron dependency.
  • - Certain types of autophagy, like ferritinophagy and lipophagy, play a role in triggering ferroptotic cell death by degrading protective proteins, whereas others, such as reticulophagy, help protect cells from this damage.
  • - The review seeks to clarify the relationship between autophagy and ferroptosis, focusing on defining terms, outlining key components, discussing experimental techniques, and providing interpretation guidelines for ongoing research.
View Article and Find Full Text PDF
Article Synopsis
  • Quantitative risk assessments for chemicals typically rely on animal testing, but there is increasing interest in effective non-animal alternatives that can provide human-relevant data.
  • There is a pressing need for standardization in in vitro testing methods and data interpretation to facilitate this transition away from animal testing.
  • An Expert Working Group found that while in vitro genotoxicity data can be useful in risk assessments, more research is needed to address uncertainties before they can be fully integrated into regulatory practices.
View Article and Find Full Text PDF

The structure determination of protein tyrosine phosphatase (PTP): phospho-protein complexes, which is essential to understand how specificity is achieved at the amino acid level, remains a significant challenge for protein crystallography and cryoEM due to the transient nature of binding interactions. Using rPTPεD1 and phospho-SrcKD as a model system, we have established an integrative workflow to address this problem, by means of which we generate a protein:phospho-protein complex model using predetermined protein structures, SAXS and pTyr-tailored MD simulations. Our model reveals transient protein-protein interactions between rPTPεD1 and phospho-SrcKD and is supported by three independent experimental validations.

View Article and Find Full Text PDF

Accumulating evidence has shown that the quality of proteins must be tightly monitored and controlled to maintain cellular proteostasis. Misfolded proteins and protein aggregates are targeted for degradation through the ubiquitin proteasome (UPS) and autophagy-lysosome systems. The ubiquitination and deubiquitinating enzymes (DUBs) have been reported to play pivotal roles in the regulation of the UPS system.

View Article and Find Full Text PDF

Relative potency factors (RPFs) for per- and polyfluoroalkyl substances (PFAS) have previously been derived based on liver effects in rodents for the purpose of performing mixture risk assessment with primary input from biomonitoring studies. However, in 2020, EFSA established a tolerable weekly intake for four PFAS assuming equal toxic potency for immune suppressive effects in humans. In this study we explored the possibility of deriving RPFs for immune suppressive effects using available data in rodents and humans.

View Article and Find Full Text PDF

Organic compounds are capable of generating hydroxyl radicals (˙OH) through their excited triplet states in natural water. It is of significance to reveal the underlying mechanism of the generation and obtain the generation quantum yield of ˙OH from organic compounds for better understanding of its involvement in indirect photochemical processes in the environment. In this study, the ˙OH quantum yields () of 20 organic compounds were determined by photochemical experiments.

View Article and Find Full Text PDF

High levels of reactive oxygen species (ROS) result in oxidative stress, which damages cells and leads to the development of many diseases. Macroautophagy/autophagy plays an important role in protecting cells from diverse stress stimuli including oxidative stress. However, the molecular mechanisms of autophagy activation in response to oxidative stress remain largely unclear.

View Article and Find Full Text PDF

Excessive generation and accumulation of highly reactive oxidizing molecules causes oxidative stress and oxidative damage to cellular components. Accumulating evidence indicates that autophagy diminishes oxidative damage in cells and maintains redox homeostasis by degrading and recycling intracellular damaged components. Here, we show that TRAF6 E3 ubiquitin ligase and A20 deubiquitinase coordinate to regulate ATG9A ubiquitination and autophagy activation in cells responding to oxidative stress.

View Article and Find Full Text PDF

Autophagy regulates cellular homeostasis by degrading and recycling cytosolic components and damaged organelles. Disruption of autophagic flux has been shown to induce or facilitate neurodegeneration and accumulation of autophagic vesicles is overt in neurodegenerative diseases. The fruit fly Drosophila has been used as a model system to identify new factors that regulate physiology and disease.

View Article and Find Full Text PDF

Background: During autophagy defense against invading microbes, certain lipid types are indispensable for generating specialized membrane-bound organelles. The lipid composition of autophagosomes remains obscure, as does the issue of how specific lipids and lipid-associated enzymes participate in autophagosome formation and maturation. Helicobacter pylori is auxotrophic for cholesterol and converts cholesterol to cholesteryl glucoside derivatives, including cholesteryl 6'-O-acyl-α-D-glucoside (CAG).

View Article and Find Full Text PDF

Antibiotic resistance in environmental matrices becomes urgently significant for public health and has been considered as an emerging environmental contaminant. In this work, the ampicillin-resistant Escherichia coli (AR E. coli) and corresponding resistance genes (bla) were effectively eliminated by the electrocatalytic process, and the dissemination risk of antibiotic resistance was also investigated.

View Article and Find Full Text PDF

The ubiquitin-proteasome system (UPS) and autophagy are two major quality control processes whose impairment is linked to a wide variety of diseases. The coordination between UPS and autophagy remains incompletely understood. Here, we show that ubiquitin ligase UBE3C and deubiquitinating enzyme TRABID reciprocally regulate K29/K48-branched ubiquitination of VPS34.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Macroautophagy/autophagy is an evolutionarily conserved intracellular pathway for the degradation of cytoplasmic materials. Under stress conditions, autophagy is upregulated and double-membrane autophagosomes are formed by the expansion of phagophores. The ATG16L1 precursor fusion contributes to development of phagophore structures and is critical for the biogenesis of autophagosomes.

View Article and Find Full Text PDF
Article Synopsis
  • - Aging in Drosophila ovarian germline stem cells (GSCs) is associated with increased mitochondrial fission, leading to cell loss and changes in mitochondrial dynamics.
  • - The increase in mitochondrial fragmentation and the protein Drp1 correlates with reduced mitochondrial health and impaired cellular functions necessary for maintaining GSCs, such as BMP signaling and fatty acid metabolism.
  • - Interventions that inhibit Drp1 or use rapamycin to enhance autophagy can help maintain aging GSCs, indicating that managing mitochondrial dynamics is crucial for stem cell health and could have implications for other stem cell types and aging-related tissue problems.
View Article and Find Full Text PDF

Singlet oxygen (O) is capable of degrading organic contaminants and inducing cell damage and inactivation of viruses. It is mainly generated through the interaction of dissolved oxygen with excited triplet states of dissolved organic matter (DOM) in natural waters. The present study aims at revealing the underlying mechanism of O generation and providing a potential tool for predicting the quantum yield of O (Φ) generation from DOM by constructing a quantitative structure-activity relationship (QSAR) model.

View Article and Find Full Text PDF

Attenuation of organic compounds in sewage treatment plants (STPs) is affected by a complex interplay between chemical (e.g. ionization, hydrolysis), physical (e.

View Article and Find Full Text PDF

Cancer cell migration plays a crucial role during the metastatic process. Reversible tyrosine phosphorylation by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) have been implicated in the regulation of cancer cell migration and invasion. However, the underlying mechanisms have not been fully elucidated.

View Article and Find Full Text PDF

The NIH-funded center for autophagy research named Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, located at the University of New Mexico Health Science Center is now completing its second year as a working center with a mission to promote autophagy research locally, nationally, and internationally. The center has thus far supported a cadre of 6 junior faculty (mentored PIs; mPIs) at a near-R01 level of funding. Two mPIs have graduated by obtaining their independent R01 funding and 3 of the remaining 4 have won significant funding from NIH in the form of R21 and R56 awards.

View Article and Find Full Text PDF

Celecoxib is the most recent non steroidal anti-inflammatory analgesic, and has been gradually used in the treatment of acute pain, rheumatism and osteoarthritis. This paper analyzes the analgesic effect of celecoxib in the treatment of knee osteoarthritis and put forward a new mechanism of knee joint extensor reconstruction assisted by bone anchor. The experimental group was given celecoxib 200 mg/ time and 1 time /d.

View Article and Find Full Text PDF

Recently, NIH has funded a center for autophagy research named the Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, located at the University of New Mexico Health Science Center (UNM HSC), with aspirations to promote autophagy research locally, nationally, and internationally. The center has 3 major missions: (i) to support junior faculty in their endeavors to develop investigations in this area and obtain independent funding; (ii) to develop and provide technological platforms to advance autophagy research with emphasis on cellular approaches for high quality reproducible research; and (iii) to foster international collaborations through the formation of an International Council of Affiliate Members and through hosting national and international workshops and symposia. Scientifically, the AIM center is focused on autophagy and its intersections with other processes, with emphasis on both fundamental discoveries and applied translational research.

View Article and Find Full Text PDF

Autophagy is essential for maintaining cellular homeostasis and survival under various stress conditions. Autophagy-related gene 9 (Atg9) encodes a multipass transmembrane protein thought to act as a membrane carrier for forming autophagosomes. However, the molecular regulation and physiological importance of Atg9 in animal development remain largely unclear.

View Article and Find Full Text PDF

Gathering required information in a fast and inexpensive way is essential for assessing the risks of engineered nanomaterials (ENMs). The extension of conventional (quantitative) structure-activity relationships ((Q)SARs) approach to nanotoxicology, i.e.

View Article and Find Full Text PDF

Toxicity of metallic nanoparticle suspensions (NP) is generally assumed to result from the combined effect of the particles present in suspensions (NP) and their released ions (NP). Evaluation and consideration of how water chemistry affects the particle-specific toxicity of NP are critical for environmental risk assessment of nanoparticles. In this study, it was found that the toxicity of Cu NP to Daphnia magna, in line with the trends in toxicity for Cu NP, decreased with increasing pH and with increasing concentrations of divalent cations and dissolved organic carbon (DOC).

View Article and Find Full Text PDF