Publications by authors named "Guangcan Xiao"

Wastewater pollutants are a major threat to natural resources, with antibiotics and heavy metals being common water contaminants. By harnessing clean, renewable solar energy, photocatalysis facilitates the synergistic removal of heavy metals and antibiotics. In this paper, MXene was both a template and raw material, and MXene-derived oxide (TiO) and SnInS Z-scheme composite materials were synthesized and characterized.

View Article and Find Full Text PDF

Precisely modulating the spatial charge migration/separation constitutes the central issue in dictating the solar conversion efficiency of photoelectrochemical (PEC) cells, whereas it still remains a grand challenge. Here, we conceptually demonstrate the construction of hierarchically ordered metal oxide (MO)/transition-metal chalcogenide quantum dots (TMC QDs) multilayered heterostructured photoanodes, that is, MO/[TMC QDs(+)/TMC QDs(-)] (TMC QDs: CdTe, CdSe, CdS), by a simple and general bottom-up self-assembly route. Tailor-made intrinsically oppositely charged TMC QDs are alternately deposited on the highly ordered MO via a generic ligand-triggered electrostatic interaction to craft heterostructured photoanodes.

View Article and Find Full Text PDF

The capability of noble metal nanoparticles (NPs) as efficient charge transfer mediators to stimulate Schottky-junction-triggered charge flow in multifarious photocatalysis has garnered enormous attention in the past decade. Nevertheless, fine-tuning and controllable fabrication of a directional charge transport channel in metal/semiconductor heterostructures via suitable interface engineering is poorly investigated. Here, we report the progressive fabrication of a tailor-made directional charge transfer channel in Pt nanoparticles (NPs)-inlaid WO (Pt-WO) nanocomposites via an efficient electrostatic layer-by-layer (LbL) self-assembly integrated with a thermal reduction treatment, by which oppositely charged metal precursor ions and polyelectrolyte building blocks were intimately and alternately assembled on the WO nanorods (NRs) by substantial electrostatic interaction.

View Article and Find Full Text PDF

Finely tuning the charge transfer constitutes a central challenge in photocatalysis, yet exquisite control of the directional charge transfer to the target reactive sites is hindered by the rapid charge recombination. Herein, dual separated charge transport channels were fabricated in a one-dimensional transition-metal chalcogenide (TMC)-based system via an elaborate layer-by-layer (LbL) self-assembly approach, for which oppositely charged metal-ion-coordinated branched polyethylenimine (BPEI) and MoS quantum dots (QDs) were alternately integrated to fabricate the multilayered TMC@(BPEI/MoS QDs) heterostructures with controllable interfaces. Photocatalytic hydrogen generation performances of such ternary heterostructures under visible light irradiation were evaluated, which unravels that the BPEI layer not only behaves as "molecule glue" to enable the electrostatic LbL assembly with MoS QDs in an alternate stacking fashion on the TMC frameworks but also acts as a unidirectional hole-transfer channel.

View Article and Find Full Text PDF

Metal nanoparticles (NPs) have been deemed an imperative sector of nanomaterial for triggering the Schottky-junction-driven electron flow in photoredox catalysis, but they suffer from sluggish charge-transfer kinetics, rendering efficient charge flow difficult. Here, we report the construction of unidirectional charge-transfer channel in a metal/semiconductor heterostructure via a ligand-triggered self-assembly method, by which hierarchically branched ligands (DMAP)-capped Pd NPs were controllably attached on the WO nanorods (NRs) scaffold, resulting in the well-defined Pd@DMAP/WO NRs heterostructures. The pinpointed deposition of Pd@DMAP on the WO NRs endows the Pd@DMAP/WO NRs heterostructure with conspicuously improved photoactivities for organic pollutant mineralization, as well as the capacities for photocatalytic selective oxidation of aromatic alcohols to aldehydes and photoreduction of chromium ions under the irradiation of simulated sunlight and visible light, far surpassing the applicability of blank WO NRs.

View Article and Find Full Text PDF

Glutathione-protected Aux nanoclusters uniformly and intimately embedded at the interface of CdSe QDs and graphene were in situ self-transformed to Au nanocrystals (NCs) via a facile thermal reduction strategy. The inlaid Au NPs substantially accelerate the interfacial directional charge transfer toward multifarious photoreduction catalysis under visible light irradiation.

View Article and Find Full Text PDF

A facile and efficient ligand-triggered electrostatic self-assembly strategy has been developed to fabricate a series of Au/CdS nanosheet (Ns) (Au-CdS Ns) nanocomposites with varied weight addition ratios of Au nanoparticles (NPs) by judiciously utilizing the intrinsic surface charge properties of assembly units, through which uniform dispersion and controllable deposition of Au NPs on the CdS Ns were achieved. Versatile probe reactions including photocatalytic oxidation of an organic dye pollutant, selective photocatalytic reduction of aromatic nitro compounds and photocatalytic hydrogen production reactions under visible light irradiation and ambient conditions were used to systematically evaluate the photoredox performances of the as-assembled well-defined Au-CdS Ns nanocomposites. It was unveiled that the photoactivities of Au-CdS Ns nanocomposites strongly depend on the weight addition ratio of Au NPs and the addition of an excess amount of Au NPs is detrimental to the separation of photogenerated charge carriers from CdS Ns.

View Article and Find Full Text PDF

Common spatial pattern (CSP) is a very popular method for spatial filtering to extract the features from electroencephalogram (EEG) signals, but it may cause serious over-fitting issue. In this paper, after the extraction and recognition of feature, we present a new way in which the recognition results are fused to overcome the over-fitting and improve recognition accuracy. And then a new framework for EEG recognition is proposed by using CSP to extract features from EEG signals, using linear discriminant analysis (LDA) classifiers to identify the user's mental state from such features, and using Choquet fuzzy integral to fuse classifiers results.

View Article and Find Full Text PDF

In recent years, tremendous research efforts have been made towards developing graphene (GR)-based nanocomposites for photocatalytic applications. In this work, surface-coarsened TiO2 nanobelts (SC-TNBs) closely enwrapped with monodispersed Ag nanoparticles (NPs) and GR nanosheets (i.e.

View Article and Find Full Text PDF

GaOOH nanorods were synthesized from Ga(NO(3))(3) via a facile microwave hydrothermal method. The obtained sample was characterized by x-ray diffraction, N(2) sorption-desorption, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, electron spin resonance, and x-ray photoelectron spectroscopy. The results revealed that the as-synthesized sample was consisted of rod-like particles.

View Article and Find Full Text PDF