Modern detection technology has driven camouflage technology toward multispectral compatibility and dynamic regulation. However, developing such stealth technologies is challenging due to different frequency-band principles. Here, this work proposes a design concept for a fluid-actuated multispectral compatible smart stealth device that employs a deformable mechanochromic layer/elastomer with a channeled dielectric layer.
View Article and Find Full Text PDFOptical-electromagnetic compatible devices are urgently required in intelligent building monitors and cross-band protection. Meanwhile, the insufficient systematicness and semi-empirical attempts significantly limit the prosperity of cross-band materials, causing enormous challenges for deviceization and material database construction. Herein, the systematical component-deviceization-machine learning prediction-array construction strategy is attempted to solve the bottleneck issues.
View Article and Find Full Text PDFDeveloping advanced stealth devices to cope with radar-infrared (IR) fusion detection and diverse application scenarios is increasingly demanded, which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations. Here, we propose a multiscale hierarchical structure design, integrating wrinkled MXene IR shielding layer and flexible FeO@C/PDMS microwave absorption layer. The top wrinkled MXene layer induces the intensive diffuse reflection effect, shielding IR radiation signals while allowing microwave to pass through.
View Article and Find Full Text PDFNatural plant leaves with multiple functions, for example, spectral features, transpiration, photosynthesis, etc., have played a significant role in the ecosystem, and artificial synthesis of plant leaves with multiple functions of natural ones is still a great challenge. Herein, this work presents an aerogel-involved living leaf (AL), most similar to natural ones so far, by embedding super-hydrophobic SiO aerogel microparticles in polyvinyl alcohol hydrogel in the presence of hygroscopic salt and chlorophyllin copper sodium to form solid-liquid-vapor triple-state gel.
View Article and Find Full Text PDFThe utilization of electromagnetic waves is rapidly advancing into the millimeter-wave frequency range, posing increasingly severe challenges in terms of electromagnetic pollution prevention and radar stealth. However, existing millimeter-wave absorbers are still inadequate in addressing these issues due to their monotonous magnetic resonance pattern. In this work, rare-earth La and non-magnetic Zr ions are simultaneously incorporated into M-type barium ferrite (BaM) to intentionally manipulate the multi-magnetic resonance behavior.
View Article and Find Full Text PDFAchieving radar-infrared compatible camouflage with dynamic adaptability has been a long-sought goal, but faces significant challenges owing to the limited dispersion relations of conventional material systems operating in different wavelength ranges. Here, this work proposes the concept of pneumatic multiscale shape morphing and design a periodically arranged pneumatic unit consisting of MXene-based morphable conductors and intake platforms. During gas actuation, the morphable conductor transforms centimeter-scale 2D flat sheets into 3D balloon shapes to enhance microwave absorption behavior, and also reconfigures micrometer-scale MXene wrinkles into smooth planes in combination with cavity-induced low heat transfer to minimize infrared (IR) signatures.
View Article and Find Full Text PDFAccompanied by the progressive development of electronic equipment, excellent electromagnetic interference (EMI) shielding materials display a satisfying prospect in protecting electronic devices against electromagnetic pollution/radiation, while integrating energy conversion. Heretofore, it remains a conundrum to availably construct thin films with multi-interfacial bridging engineering as multifunctional shielding devices. To effectively achieve electromagnetic wave attenuation and integrate energy conversion, a co-mixed vacuum-assisted filtration strategy is designed to synthesize Au@MXene/cellulose nanocrystal/dodecylbenzenesulfonic acid-doped polyaniline (AMCP) films.
View Article and Find Full Text PDFIdeal radar absorbing materials (RAMs) require instantaneous, programmable, and spontaneous adaptability to cope with a complex electromagnetic (EM) environment across the full working frequency. Despite various material systems and adaptive mechanisms having been demonstrated, it remains a formidable challenge to integrate these benefits simultaneously. Here, we present a pneumatic matrix that couples morphable MXene/elastomer conductors with dielectric spacers, which leverages controllable airflow to reconfigure the spatial structure between a flat sheet and a hemispherical crown while maintaining resistance stability via wrinkle folding and unfolding.
View Article and Find Full Text PDFElectromagnetic pollution and cancer are phenomena that essentially endanger the future of humanity. Herein, multiple approaches are being proposed to solve the aforementioned issues. Recent studies have demonstrated that by regulating the morphology, defect, and phase of materials, their microwave absorbing, optical, and hyperthermia properties are tunable.
View Article and Find Full Text PDFThe emergence of green flexible aerogel electronics based on natural materials is expected to solve part of the global environmental and energy crisis. However, it is still challenging to achieve large-scale production and multifunctional stable applications of natural biomass fiber aerogel (BFA) materials. Herein, we exploit the interfacial bridging between the flower-type titanium dioxide nanoarray (FTNA) and natural fiber substrates to modulate the electronic structure and loss mechanism to achieve multifunctional properties.
View Article and Find Full Text PDFWearable devices with efficient thermal management and electromagnetic interference (EMI) shielding are highly desirable for improving human comfort and safety. Herein, a multifunctional wearable carbon fibers (CF) @ polyaniline (PANI) / silver nanowires (Ag NWs) composites with a "branch-trunk" interlocked micro/nanostructure were achieved through "three-in-one" multi-scale design. The reasonable assembly of the three kinds of one-dimensional (1D) materials can fully exert their excellent properties i.
View Article and Find Full Text PDFMechano-optical systems with on-demand adaptability and a broad spectrum from the visible to microwave are critical for complex multiband electromagnetic (EM) applications. Most existing material systems merely have dynamic optical or microwave tunability because their EM wave response is strongly wavelength-dependent. Inspired by cephalopod skin, we develop an adaptive multispectral mechano-optical system based on bilayer acrylic dielectric elastomer (ADE)/silver nanowire (AgNW) films, which reconfigures the surface morphology between wrinkles and cracks via mechanical contraction and stretching.
View Article and Find Full Text PDFRadar-infrared (IR) compatible stealth can satisfy the characteristics of excellent electromagnetic wave attenuation property and low infrared emissivity. However, concurrently satisfying these demands is still a great challenge at present. Herein, multi-interfacial engineering strategy was proposed for the preparation of radar-IR compatible stealth materials.
View Article and Find Full Text PDFCurrently, light-transmitting, energy-saving, and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment. Here, we developed a cellulose composite with excellent optical transmittance that retained the natural shape and fiber structure of bamboo. The modified whole bamboo possessed an impressive optical transmittance of approximately 60% at 6.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
Microwave-absorbing materials with wide bandwidth and high absorptivity are increasingly playing an important role in over-the-air (OTA) testing. In this work, a kind of pyramid absorbing material was prepared using flame-retardant absorbers as the filler. In addition, a coating was used to further improve the flame-retardant properties of the microwave-absorbing material.
View Article and Find Full Text PDFThe development of infrared-radar compatible materials/devices is challenging because the requirements of material properties between infrared and radar stealth are contradictory. Herein, a composite of poly(3, 4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) coated melamine foam is designed to integrate the advantages of the dual materials and the created heterogeneous interface between them. The as-designed PEDOT:PSS@melamine composite shows excellent mechanical properties, outstanding thermal insulation, and improved thermal infrared stealth performance.
View Article and Find Full Text PDFDeveloping ultrabroad radar-infrared compatible stealth materials has turned into a research hotspot, which is still a problem to be solved. Herein, the copper sulfide wrapped by reduced graphene oxide to obtain three-dimensional (3D) porous network composite aerogels (CuS@rGO) were synthesized via thermal reduction ways (hydrothermal, ascorbic acid reduction) and freeze-drying strategy. It was discovered that the phase components (rGO and CuS phases) and micro/nano structure (microporous and nanosheet) were well-modified by modulating the additive amounts of CuS and changing the reduction ways, which resulted in the variation of the pore structure, defects, complex permittivity, microwave absorption, radar cross section (RCS) reduction value and infrared (IR) emissivity.
View Article and Find Full Text PDFSilver nanowire (Ag NW) has been considered as the promising building block for the fabrication of transparent electromagnetic interference (EMI) shielding films. However, the practical application of Ag NW-based EMI shielding films has been restricted due to the unsatisfactory stability of Ag NW. Herein, we proposed a reduced graphene oxide (rGO) decorated Ag NW film, which realizes a seamless integration of optical transparency, highly efficient EMI shielding, reliable durability and stability.
View Article and Find Full Text PDFElectromagnetic (EM) absorbers play an increasingly essential role in the electronic information age, even toward the coming "intelligent era". The remarkable merits of heterointerface engineering and its peculiar EM characteristics inject a fresh and infinite vitality for designing high-efficiency and stimuli-responsive EM absorbers. However, there still exist huge challenges in understanding and reinforcing these interface effects from the micro and macro perspectives.
View Article and Find Full Text PDFFlexible and transparent conductive films are highly desirable in some optoelectronic devices, such as smart windows, touch panels, as well as displays and electromagnetic protection field. Silver nanowire (Ag NW) has been considered as the best material to replace indium tin oxide (ITO) to fabricate flexible transparent electromagnetic interference (EMI) shielding films due to its superior comprehensive performance. However, the common substrates supporting Ag NWs require surface modification to enhance the adhesion with Ag NWs.
View Article and Find Full Text PDFHigh-performance electromagnetic (EM) wave absorption and shielding materials integrating with flexibility, air permeability, and anti-fatigue characteristics are of great potential in portable and wearable electronics. These materials usually prepared by depositing metal or alloy coatings on fabrics. However, the shortcomings of heavy weight and easy corrosion hamper its application.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2021
In the face of increasingly severe electromagnetic (EM) wave pollution, the research of EM wave absorbing materials is an effective solution. To reduce the density of traditional absorbing materials, in this work, FeCo/CoFeO/carbon nanofiber composites were successfully prepared by electrospinning for the EM wave attenuation application. Benefiting from the loss ability of interface polarization, dipole polarization, and magnetic loss, the composites obtained a bandwidth of 5.
View Article and Find Full Text PDFThe eco-friendly shaddock peel-derived carbon aerogels were prepared by a freeze-drying method. Multiple functions such as thermal insulation, compression resistance and microwave absorption can be integrated into one material-carbon aerogel. Novel computer simulation technology strategy was selected to simulate significant radar cross-sectional reduction values under real far field condition.
View Article and Find Full Text PDFDeveloping a flexible, lightweight and effective electromagnetic (EM) absorber remains challenging despite being on increasing demand as more wearable devices and portable electronics are commercialized. Herein, we report a flexible and lightweight hybrid paper by a facile vacuum-filtration-induced self-assembly process, in which cotton-derived carbon fibers serve as flexible skeletons, compactly surrounded by other microwave-attenuating components (reduced graphene oxide and FeO@C nanowires). Owing to its unique architecture and synergy of the three components, the as-prepared hybrid paper exhibits flexible and lightweight features as well as superb microwave absorption performance.
View Article and Find Full Text PDF