Publications by authors named "GuangMin Jia"

Porcine interferon-induced protein with tetratricopeptide repeats 3 (poIFIT3) is one of the genes most abundantly induced by IFN-α/β and swine influenza virus (SIV). However, little information is available about the role of poIFIT3 in host defense among pigs. In this study, we detected the upregulation of poIFIT3 in porcine alveolar macrophages (PAM) infected with SIV and subsequently cloned poIFIT3 from poly(I:C)-treated PAM cells.

View Article and Find Full Text PDF

Since the emergence of the 2009 pandemic (H1N1) virus (2009/H1N1) in April 2009, cases of transmission from humans to pigs have been reported frequently. In our previous studies, four 2009/H1N1 variants were isolated from pigs. To better understand the phenotypic differences of the pig isolates compared with the human isolate, in this study mice were inoculated intranasally with different 2009/H1N1 viruses, and monitored for morbidity, mortality, and viral replication, cytokine production and pathological changes in the lungs.

View Article and Find Full Text PDF

Background: Vitamin A is essential for normal growth, development, reproduction, cell proliferation, cell differentiation, immune function and vision. Hypovitaminosis A can lead to a series of pathological damage in animals. This report describes the case of hypovitaminosis A associated with secondary complications in calves.

View Article and Find Full Text PDF

The H1N1/2009 influenza virus has the potential to cause a human pandemic, and sporadic cases of human-to-pig transmission have been reported. In this study, two influenza viruses were isolated from pigs. A phylogenetic analysis showed that the A/swine/NanChang/F9/2010(H1N1) (F9/10) strain shared a high degree of homology with the pandemic H1N1/2009 virus, and A/swine/GuangDong/34/2006 (H1N1) (34/06) strains was a classical swine influenza virus.

View Article and Find Full Text PDF

Background: As a mild, highly contagious, respiratory disease, swine influenza always damages the innate immune systems, and increases susceptibility to secondary infections which results in considerable morbidity and mortality in pigs. Nevertheless, the systematical host response of pigs to swine influenza virus infection remains largely unknown. To explore it, a time-course gene expression profiling was performed for comprehensive analysis of the global host response induced by H1N1 swine influenza virus in pigs.

View Article and Find Full Text PDF