The reconstruction of demographic history using ancient and modern genomic resources reveals extensive interactions and admixture between ancient nomadic pastoralists and the social organizations of the Chinese Central Plain. However, the extent to which Y-chromosome genetic legacies from nomadic emperor-related ancestral lineages influence the Chinese paternal gene pool remains unclear. Here, we genotype 2717 ethnolinguistically diverse samples belonging to C2a lineages, perform whole-genome sequencing on 997 representative samples and integrate these data with ancient genomic sequences.
View Article and Find Full Text PDFComprehensive characterizations of genetic diversity and demographic models of ethnolinguistically diverse Chinese populations are essential for elucidating their forensic characteristics and evolutionary past. We developed a 114-plex NGS InDel panel to genotype 114 genome-wide markers and investigated the genetic structures of Zhuang, Hui, Miao, Li, Tibetan, Yi, and Mongolian populations, encompassing five language families. This panel demonstrated robust performance, with exceptional potential for forensic individual identification and paternity testing, evidenced by the combined power of discrimination for 77 autosomal InDels (ranged from 1-3.
View Article and Find Full Text PDFPurpose: Our study aimed to establish a prediction model for coronary artery disease (CAD) that integrates immune infiltration and a gene expression signature.
Methods: 613 differentially expressed genes (DEGs) and 12 hub genes were screened via the GSE113079 dataset. The pathway enrichment analysis indicated that these genes (613 DEGs and 12 hub genes) were closely associated with the inflammatory and immune responses.
With the release of large-scale genomic resources from ancient and modern populations, advancements in computational biology tools, and the enhancement of data mining capabilities, the field of genomics is undergoing a revolutionary transformation. These advancements and changes have not only significantly deepened our understanding of the complex evolutionary processes of human origins, migration, and admixture but have also unveiled the impact of these processes on human health and disease. They have accelerated research into the genetic basis of human health and disease and provided new avenues for uncovering the evolutionary trajectories recorded in the human genome related to population history and disease genetics.
View Article and Find Full Text PDFGenetic genealogy provides crucial insights into the complex biological relationships within contemporary and ancient human populations by analyzing shared alleles and chromosomal segments that are identical by descent to understand kinship, migration patterns, and population dynamics. Within forensic science, forensic investigative genetic genealogy (FIGG) has gained prominence by leveraging next-generation sequencing technologies and population-specific genomic resources, opening new investigative avenues. In this review, we synthesize current knowledge, underscore recent advancements, and discuss the growing role of FIGG in forensic genomics.
View Article and Find Full Text PDFHuman Y-chromosomes are characterized by nonrecombination and uniparental inheritance, carrying traces of human history evolution and admixture. Large-scale population-specific genomic sources based on advanced sequencing technologies have revolutionized our understanding of human Y chromosome diversity and its anthropological and forensic applications. Here, we reviewed and meta-analyzed the Y chromosome genetic diversity of modern and ancient people from China and summarized the patterns of founding lineages of spatiotemporally different populations associated with their origin, expansion, and admixture.
View Article and Find Full Text PDFPathogen‒host adaptative interactions and complex population demographical processes, including admixture, drift, and Darwen selection, have considerably shaped the Neolithic-to-Modern Western Eurasian population structure and genetic susceptibility to modern human diseases. However, the genetic footprints of evolutionary events in East Asia remain unknown due to the underrepresentation of genomic diversity and the design of large-scale population studies. We reported one aggregated database of genome-wide SNP variations from 796 Tai-Kadai (TK) genomes, including that of Bouyei first reported here, to explore the genetic history, population structure, and biological adaptative features of TK people from southern China and Southeast Asia.
View Article and Find Full Text PDFBackground: As one of the most common congenital abnormalities in male births, cryptorchidism has been found to have a polygenic aetiology according to previous studies of common variants. However, little is known about genetic predisposition of rare variants for cryptorchidism, since rare variants have larger effective size on diseases than common variants.
Methods: In this study, a cohort of 115 Chinese probands with cryptorchidism was analysed using whole-genome sequencing, alongside 19 parental controls and 2136 unaffected men.
Background: The underrepresentation of human genomic resources from Southern Chinese populations limited their health equality in the precision medicine era and complete understanding of their genetic formation, admixture, and adaptive features. Besides, linguistical and genetic evidence supported the controversial hypothesis of their origin processes. One hotspot case was from the Chinese Guangxi Pinghua Han people (GPH), whose language was significantly similar to Southern Chinese dialects but whose uniparental gene pool was phylogenetically associated with the indigenous Tai-Kadai (TK) people.
View Article and Find Full Text PDFBackground: The underrepresentation of Hmong-Mien (HM) people in Asian genomic studies has hindered our comprehensive understanding of the full landscape of their evolutionary history and complex trait architecture. South China is a multi-ethnic region and indigenously settled by ethnolinguistically diverse HM, Austroasiatic (AA), Tai-Kadai (TK), Austronesian (AN), and Sino-Tibetan (ST) people, which is regarded as East Asia's initial cradle of biodiversity. However, previous fragmented genetic studies have only presented a fraction of the landscape of genetic diversity in this region, especially the lack of haplotype-based genomic resources.
View Article and Find Full Text PDFThe worldwide implementation of short tandem repeats (STR) profiles in forensic genetics necessitated establishing and expanding the CODIS core loci set to facilitated efficient data management and exchange. Currently, the mainstay CODIS STRs are adopted in most general-purpose forensic kits. However, relying solely on these loci failed to yield satisfactory results for challenging tasks, such as bio-geographical ancestry inference, complex DNA mixture profile interpretation, and distant kinship analysis.
View Article and Find Full Text PDFThe southward expansion of East Asian farmers profoundly influenced the social evolution of Southeast Asia by introducing cereal agriculture. However, the timing and routes of cereal expansion in key regions are unclear due to limited empirical evidence. Here we report macrofossil, microfossil, multiple isotopic (C/N/Sr/O) and paleoproteomic data directly from radiocarbon-dated human samples, which were unearthed from a site in Xingyi in central Yunnan and which date between 7000 and 3300 a BP.
View Article and Find Full Text PDFUniparental-inherited haploid genetic marker of Y-chromosome single nucleotide polymorphisms (Y-SNP) have the power to provide a deep understanding of the human evolutionary past, forensic pedigree, and bio-geographical ancestry information. Several international cross-continental or regional Y-panels instead of Y-whole sequencing have recently been developed to promote Y-tools in forensic practice. However, panels based on next-generation sequencing (NGS) explicitly developed for Chinese populations are insufficient to represent the Chinese Y-chromosome genetic diversity and complex population structures, especially for Chinese-predominant haplogroup O.
View Article and Find Full Text PDFTibeto-Burman (TB) people have endeavored to adapt to the hypoxic, cold, and high-UV high-altitude environments in the Tibetan Plateau and complex disease exposures in lowland rainforests since the late Paleolithic period. However, the full landscape of genetic history and biological adaptation of geographically diverse TB-speaking people, as well as their interaction mechanism, remain unknown. Here, we generate a whole-genome meta-database of 500 individuals from 39 TB-speaking populations and present a comprehensive landscape of genetic diversity, admixture history, and differentiated adaptative features of geographically different TB-speaking people.
View Article and Find Full Text PDFBackground: Yungui Plateau in Southwest China is characterized by multi-language and multi-ethnic communities and is one of the regions with the wealthiest ethnolinguistic, cultural and genetic diversity in East Asia. There are numerous Tai-Kadai (TK)-speaking populations, but their detailed evolutionary history and biological adaptations are still unclear.
Results: Here, we genotyped genome-wide SNP data of 77 unrelated TK-speaking Zhuang and Dong individuals from the Yungui Plateau and explored their detailed admixture history and adaptive features using clustering patterns, allele frequency differentiation and sharing haplotype patterns.