Publications by authors named "Guang-Zhong Cao"

Decoding lower-limb motor imagery (MI) is highly important in brain-computer interfaces (BCIs) and rehabilitation engineering. However, it is challenging to classify lower-limb MI from electroencephalogram (EEG) signals, because lower-limb motions (LLMs) including MI are excessively close to physiological representations in the human brain and generate low-quality EEG signals. To address this challenge, this paper proposes a multidimensional attention-based convolutional neural network (CNN), termed MACNet, which is specifically designed for lower-limb MI classification.

View Article and Find Full Text PDF

Motor imagery (MI)-electroencephalography (EEG) decoding plays an important role in brain-computer interface (BCI), which enables motor-disabled patients to communicate with external world via manipulating smart equipment. Currently, deep learning (DL)-based methods are popular for EEG decoding. Whereas the utilization efficiency of EEG features in frequency and temporal domain is not sufficient, which results in poor MI classification performance.

View Article and Find Full Text PDF

Lower-limb exoskeletons (LLEs) can provide rehabilitation training and walking assistance for individuals with lower-limb dysfunction or those in need of functionality enhancement. Adapting and personalizing the LLEs is crucial for them to form an intelligent human-machine system (HMS). However, numerous LLEs lack thorough consideration of individual differences in motion planning, leading to subpar human performance.

View Article and Find Full Text PDF

3-D lane detection is a challenging task due to the diversity of lanes, occlusion, dazzle light, and so on. Traditional methods usually use highly specialized handcrafted features and carefully designed postprocessing to detect them. However, these methods are based on strong assumptions and single modal so that they are easily scalable and have poor performance.

View Article and Find Full Text PDF

Surface defect detection plays an essential role in industry, and it is challenging due to the following problems: 1) the similarity between defect and nondefect texture is very high, which eventually leads to recognition or classification errors and 2) the size of defects is tiny, which are much more difficult to be detected than larger ones. To address such problems, this article proposes an adaptive image segmentation network (AIS-Net) for pixelwise segmentation of surface defects. It consists of three main parts: multishuffle-block dilated convolution (MSDC), dual attention context guidance (DACG), and adaptive category prediction (ACP) modules, where MSDC is designed to merge the multiscale defect features for avoiding the loss of tiny defect feature caused by model depth, DACG is designed to capture more contextual information from the defect feature map for locating defect regions and obtaining clear segmentation boundaries, and ACP is used to make classification and regression for predicting defect categories.

View Article and Find Full Text PDF

In the field of welding robotics, visual sensors, which are mainly composed of a camera and a laser, have proven to be promising devices because of their high precision, good stability, and high safety factor. In real welding environments, there are various kinds of weld joints due to the diversity of the workpieces. The location algorithms for different weld joint types are different, and the welding parameters applied in welding are also different.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5ch2s1ogmd1ri0q432ie8hqtia8idt0j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once