Publications by authors named "Guang-Yun Song"

The p53 gene product is an attractive target for tumor immunotherapy. The present study aims to understand the potential of MVAp53 vaccine to induce expansion of p53-specific cytotoxic T lymphocyte ex vivo in cancer patients. The result indicated that 14 of 23 cancer patients demonstrated p53-specific IFN-γ production, degranulation, cell proliferation, and lysis of p53 overexpressed human tumor cell lines.

View Article and Find Full Text PDF

Survivin is overexpressed by 70-80% of pancreatic cancers, and is associated with resistance to chemotherapy and a poor prognosis. Gemcitabine has been a standard treatment for patients with advanced pancreatic cancer for a decade. Recent reports have demonstrated that gemcitabine treatment attenuates the tumor-suppressive environment by eliminating CD11b(+)/Gr-1(+) myeloid-derived suppressor cells (MDSCs).

View Article and Find Full Text PDF

The p53 gene product is overexpressed in approximately 50% of cancers, making it an ideal target for cancer immunotherapy. We previously demonstrated that a modified vaccinia Ankara (MVA) vaccine expressing human p53 (MVA-p53) was moderately active when given as a homologous prime/boost in a human p53 knock in (Hupki) mouse model. We needed to improve upon the inefficient homologous boosting approach, because development of neutralizing immunity to the vaccine viral vector backbone suppresses its immunogenicity.

View Article and Find Full Text PDF

Background: The cellular regulatory protein p53 is overexpressed by almost 50% of all malignancies making it an attractive target for a vaccine approach to cancer. A number of immunotherapy approaches targeting p53 have been evaluated successfully in murine models, but translation of these preclinical findings to the clinic has been unsuccessful. Prior studies in our laboratory employing murine models demonstrated that a modified vaccinia virus Ankara (MVA) vaccine expressing murine p53 could stimulate p53 specific immunity.

View Article and Find Full Text PDF

The p53 gene product is overexpressed by almost 50% of cancers, making it an ideal target for cancer immunotherapy. We previously demonstrated rejection of established p53-overexpressing tumors without stimulating autoimmunity by immunization with modified vaccinia Ankara-expressing murine p53 (MVAp53). Tumor rejection was enhanced through antibody-mediated CTL-associated antigen 4 (CTLA-4) blockade.

View Article and Find Full Text PDF