Van-der Waals (vdW) atomically layered crystals can act as optical waveguides over a broad range of the electromagnetic spectrum ranging from Terahertz to visible. Unlike common Si-based waveguides, vdW semiconductors host strong excitonic resonances that may be controlled using non-thermal stimuli including electrostatic gating and photoexcitation. Here, we utilize waveguide modes to examine photo-induced changes of excitons in the prototypical vdW semiconductor, WSe, prompted by femtosecond light pulses.
View Article and Find Full Text PDFDomain walls separating regions of AB and BA interlayer stacking in bilayer graphene have attracted attention as novel examples of structural solitons, topological electronic boundaries, and nanoscale plasmonic scatterers. We show that strong coupling of domain walls to surface plasmons observed in infrared nanoimaging experiments is due to topological chiral modes confined to the walls. The optical transitions among these chiral modes and the band continua enhance the local conductivity, which leads to plasmon reflection by the domain walls.
View Article and Find Full Text PDFWe characterized plasmon propagation in graphene on thin films of the high-κ dielectric PbZr0.3Ti0.7O3 (PZT).
View Article and Find Full Text PDFGraphene has attracted worldwide interest since its experimental discovery, but the preparation of large-area, continuous graphene film on SiO2/Si wafers, free from growth-related morphological defects or transfer-induced cracks and folds, remains a formidable challenge. Growth of graphene by chemical vapour deposition on Cu foils has emerged as a powerful technique owing to its compatibility with industrial-scale roll-to-roll technology. However, the polycrystalline nature and microscopic roughness of Cu foils means that such roll-to-roll transferred films are not devoid of cracks and folds.
View Article and Find Full Text PDFA controllable optical anisotropy in CVD graphene is shown. The transparency in the visible range of pre-strained CVD graphene exhibits a periodic modulation as a function of polarization direction. The strain sensitivity of the optical response of graphene demonstrated here can be effectively utilized towards novel ultra-thin optical devices and strain sensing applications.
View Article and Find Full Text PDFGraphene has exceptional optical, mechanical, and electrical properties, making it an emerging material for novel optoelectronics, photonics, and flexible transparent electrode applications. However, the relatively high sheet resistance of graphene is a major constraint for many of these applications. Here we propose a new approach to achieve low sheet resistance in large-scale CVD monolayer graphene using nonvolatile ferroelectric polymer gating.
View Article and Find Full Text PDFThe technical breakthrough in synthesizing graphene by chemical vapor deposition methods (CVD) has opened up enormous opportunities for large-scale device applications. To improve the electrical properties of CVD graphene grown on copper (Cu-CVD graphene), recent efforts have focused on increasing the grain size of such polycrystalline graphene films to 100 μm and larger. While an increase in grain size and, hence, a decrease of grain boundary density is expected to greatly enhance the device performance, here we show that the charge mobility and sheet resistance of Cu-CVD graphene is already limited within a single grain.
View Article and Find Full Text PDFRecent experiments on ferroelectric gating have introduced a novel functionality, i.e., nonvolatility, in graphene field-effect transistors.
View Article and Find Full Text PDF