Publications by authors named "Guang-Shui Na"

Antibiotic resistance genes (ARGs) are a class of emerging contaminants that significantly threaten public health. In this work, the profiles of ARGs and microbial communities in the soil, sediment, migratory bird, and local deer fecal samples collected from the Arctic were characterized using a metagenomic approach. The results retrieved the baseline profiles of ARGs and identified the role of migratory birds in disseminating ARGs in the Arctic.

View Article and Find Full Text PDF

To investigate the genotoxicity and reveal the potential toxicological mechanisms of Hexabromocyclododecane (HBCD), human breast cells HBL-100 were exposed to a sequence of HBCD concentrations (0, 5, 10, and 50 mg/L) for 24 h. With a series of zymology and molecular biology methods, we found that HBCD induced dose-dependent oxidative stress on HBL-100 DNA. As revealed in qRT-PCR, activated prognostic factor ATM down-regulated tumor suppressor gene BRCA1 and prompted DNA repair genes hOGG1 and hMTH1 expression in lower concentrations of HBCD (< 10 mg/L).

View Article and Find Full Text PDF

Objective: To use Monte Carlo simulation to assess the uncertainty and variability of tobacco consumption through wastewater analysis in a city.

Methods: A total of 11 wastewater treatment plants (WWTPs) (serving 2.2 million people; approximately 83% of urban population in Dalian) were selected and sampled.

View Article and Find Full Text PDF

This study selected the azole fungicide fluconazole as a model compound, and investigated its photodegradation kinetics and photoreaction types in pure water. It was found that under UV-vis irradiation (lambda > 200 nm), the fluconazole photodegraded fast and followed the pseudo-first-order kinetics, whereas under simulated sunlight (lambda > 290 nm), photodegradation did not occur. The ROS scavenging experiments and competition kinetic examination indicated that the compound underwent both direct photolysis and self-sensitized photooxidation via *OH other than 1O2.

View Article and Find Full Text PDF