Publications by authors named "Guang-Qi He"

Cucurbits are a diverse plant family that includes economically important crops, such as cucumber, watermelon, melon, and pumpkin. Knowledge of the roles that long terminal repeat retrotransposons (LTR-RTs) have played in diversification of cucurbit species is limited; to add to understanding of the roles of LTR-RTs, we assessed their distributions in four cucurbit species. We identified 381, 578, 1086, and 623 intact LTR-RTs in cucumber (Cucumis sativus L.

View Article and Find Full Text PDF

Pearl of Csaba (PC) is a valuable backbone parent for early-ripening grapevine (Vitis vinifera) breeding, from which many excellent early ripening varieties have been bred. However, the genetic basis of the stable inheritance of its early ripening trait remains largely unknown. Here, the pedigree, consisting of 40 varieties derived from PC, was re-sequenced for an average depth of ∼30×.

View Article and Find Full Text PDF

Histone demethylases containing the JmjC domain play an extremely important role in maintaining the homeostasis of histone methylation and are closely related to plant growth and development. Currently, the JmjC domain-containing proteins have been reported in many species; however, they have not been systematically studied in grapes. In this paper, 21 VviJMJ gene family members were identified from the whole grape genome, and the VviJMJ genes were classified into five subfamilies: KDM3, KDM4, KDM5, JMJD6, and JMJ-only based on the phylogenetic relationship and structural features of Arabidopsis and grape.

View Article and Find Full Text PDF

Hydrogenation of nitriles is an efficient and environmentally friendly route to synthesize symmetrical secondary amines, but it usually produces a mixture of amines, imines, and hydrogenolysis by-products. Herein we report a magnetic quaternary-component Pt-CuFe/Fe O nanocatalyst system for the selective synthesis of symmetrical secondary amines with ammonia borane as hydrogen donor. The catalyst with a low Pt loading (0.

View Article and Find Full Text PDF