Oxidative stress plays a key role in the occurrence and development of diabetes. With their unique redox properties, CeO2 nanoparticles (nanoceria) exhibit promising potential for the treatment of diabetes resulting from oxidative stress. Here, we develop a novel preparation of hydrophilic CeO2 nanocubes (NCs) with two different sizes (5 nm and 25 nm) via an acetate assisted hydrothermal method.
View Article and Find Full Text PDFDue to their excellent anti-oxidation performance, CeO2 nanoparticles receive wide attention in pharmacological application. Deep understanding of the anti-oxidation mechanism of CeO2 nanoparticles is extremely important to develop potent CeO2 nanomaterials for anti-oxidation application. Here, we report a detailed study on the anti-oxidation process of CeO2 nanoparticles.
View Article and Find Full Text PDFEfficient tailoring of upconversion emissions in lanthanide-doped nanocrystals is of great significance for extended optical applications. Here, we present a facile and highly effective method to tailor the upconversion selectivity by engineering the local structure of lanthanides in Na(x)REF(3+x) nanocrystals. The local structure engineering was achieved through precisely tuning the composition of nanocrystals, with different [Na]/[RE] ([F]/[RE]) ratio.
View Article and Find Full Text PDF