In the clinic, small-molecule metabolites (SMMs) in blood are highly convincing indicators for disease diagnosis, such as cancer. However, challenges still exist for detection of SMMs due to their low concentration and complicated components in blood. In this work, we report the design of a novel "selenium signature" nanoprobe (Se nanoprobe) for efficient identification of multiple aldehyde metabolites in blood.
View Article and Find Full Text PDFThe Pd(II)-catalyzed C-H bond activation/C-N bond cleavage annulation reaction of -alkyoxyamide aryne is developed to synthesize 9,10-dihydrophenanthrenone derivatives. This reaction exhibited good functional group compatibility with yields up to 92%. Detailed mechanistic studies showed that the key to C-N bond cleavage is the formed eight-membered palladacycle intermediate undergoing nucleophilic addition to the carbonyl group, which provides a new and practical way for -alkoxyamide directed C-H bond activation.
View Article and Find Full Text PDFAccurate detection, quantitation, and differentiation of polycyclic aromatic hydrocarbons (PAHs) and their isomers in diverse samples is elusive for paper spray ionization mass spectrometry (PSI-MS). To address these issues, herein, for the first time, we propose to fabricate a novel, flexible, and stable paper substrate based on covalent organic frameworks (COFs) via an in situ method under room temperature in air. After embedding gold nanoparticles (AuNPs), this paper substrate (COFs-paper) could further serve as a multifunctional plasmonic matrix (AuNPs-COFs-paper) for dual-wavelength laser-assisted PSI-MS detection of PAHs and feasible paper surface-enhanced Raman scattering (pSERS)-aided isomer discrimination.
View Article and Find Full Text PDFCoordination-driven self-assembly features good predictability and directionality in the construction of discrete metallacycles and metallacages with well-defined sizes and shapes, but their medicinal application has been limited by their low stability and solubility. Herein, we have designed and synthesized a highly stable coordination-driven metallacycle with desired functionality derived from a perylene-diimide ligand a spontaneous deprotonation self-assembly process. Brilliant chemical stability and singlet oxygen production ability of this emissive octanuclear organopalladium macrocycle make it a good candidate toward biological studies.
View Article and Find Full Text PDFSignificant efforts have been made to develop robust and reliable methods for simultaneous biothiols determination in different matrices, but there still exist the problems such as easy oxidation, tedious derivatization, and difficulty in discrimination, which brings unsatisfactory results in their accuracy and fast quantification in biological samples. To overcome these problems, a simultaneous biothiols detection method combining a "selenium signature" chemical probe and paper spray mass spectrometry (PS-MS) was proposed. In the strategy, the modified-paper substrate is used to enhance the analytical performance.
View Article and Find Full Text PDFMaterials with aggregation-induced emission (AIE) properties have received increased attention recently due to their potential applications in light-emitting devices, chemo/biosensors and biomedical diagnostics. In general, AIE requires the forced aggregation of the AIEgens induced by the poor solvent or close arrangement of AIEgens covalently attached to polymer chains. Here, we report two coordination-enhanced fluorescent supramolecular complexes featuring hierarchically restricted intramolecular motions via the self-assembly of tetraphenylethylene (TPE)-based tetra-dentate () and bidentate () ligands and the -Pd(en)(NO₃)₂ (en = ethylenediamine) unit.
View Article and Find Full Text PDFFunctional molecular capsules have attracted a lot of attention in recent years because of their potential applications as chemosensors, catalysis, drug carriers, and so on. We report here the coordination-directed self-assembly of a fluorescent-lantern-type molecular capsule from four tetraphenylethylene-based ditopic ligands and two square-planar palladium(II) ions. The capsule has been thoroughly characterized by UV-vis, 1D/2D NMR, electrospray ionization time-of-flight mass spectrometry, and single-crystal X-ray diffraction studies.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2015
Segmental and continuous hexagonal-packed mesoporous metal-organic nanotubes (MMONTs) with outside diameters of up to 4.5 nm and channel sizes of 2.4 nm were hierarchically constructed by a rational multicomponent self-assembly process involving starting from [L2Pd2(NO3)2] (L=o-phenanthroline or 2,2'-bipyridine) and 4-pyridinyl-3-pyrazole.
View Article and Find Full Text PDFCoordination-directed self-assembly has become a well-established technique for the construction of functional supramolecular structures. In contrast to the most often exploited transition metals, trivalent lanthanides Ln(III) have been less utilized in the design of polynuclear self-assembled structures despite the wealth of stimulating applications of these elements. In particular, stereochemical control in the assembly of lanthanide chiral cage compounds is not easy to achieve in view of the usually large lability of the Ln(III) ions.
View Article and Find Full Text PDF