Background: Although the role of platelet-rich plasma (PRP) in ultraviolet light B (UVB)-induced photoaging has been confirmed in many studies, the specific mechanism is still not clear. Therefore, we attempted to investigate the effect and mechanism of PRP on UVB-induced human keratinocyte (HaCaT cells) apoptosis.
Methods: HaCaT cells were collected to construct UVB-induced photoaging models.
To investigate the effects of autologous platelet-rich plasma (PRP) on burn wound and burn pain in rats. Rats were treated with high-temperature copper rod to induce skin burn. During treatment, the wound area of rats was recorded on days 0, 3, 7, 10, 14 and healing rates were calculated.
View Article and Find Full Text PDFIn this paper, we report the optical injection locking of an L-band (∼1580 nm) 4.7 GHz III-V-on-silicon mode-locked laser with a narrow line width continuous wave (CW) source. This technique allows us to reduce the MHz optical line width of the mode-locked laser longitudinal modes down to the line width of the source used for injection locking, 50 kHz.
View Article and Find Full Text PDFWe demonstrate direct modulation of a heterogeneously integrated C-band DFB laser on SOI at 28 Gb/s with a 2 dB extinction ratio. This is the highest direct modulation bitrate so far reported for a membrane laser coupled to an SOI waveguide. The laser operates single mode with 6 mW output power at 100 mA bias current.
View Article and Find Full Text PDFA heterogeneously integrated III-V-on-silicon laser is reported, integrating a III-V gain section, a silicon ring resonator for wavelength selection and two silicon Bragg grating reflectors as back and front mirrors. Single wavelength operation with a side mode suppression ratio higher than 45 dB is obtained. An output power up to 10 mW at 20 °C and a thermo-optic wavelength tuning range of 8 nm are achieved.
View Article and Find Full Text PDFThe application of a mode-locked quantum-dot Fabry-Perot (QD-FP) laser in a wavelength preserving all-optical 3R regenerator is demonstrated at 40 Gb/s. The 3R regenerator consists of a QD-FP laser for low-timing jitter clock recovery, cross-phase modulation based retiming, and self-phase modulation based reshaping. The performance of the alloptical 3R regenerator is assessed experimentally in terms of the Q-factor, timing jitter and bit-error ratio.
View Article and Find Full Text PDFWe investigate experimentally all-optical clock recovery for return-to-zero (RZ) and nonreturn-to-zero (NRZ) differential phase-shift keying (DPSK) signals at 40 Gbits/s using a passively mode-locked quantum-dot Fabry-Perot (QD-FP) semiconductor laser. The QD-FP laser exhibits a beat spectrum linewidth of 80 kHz, which enables a recovered clock signal with a root-mean-square timing jitter of 160 fs for the RZ-DPSK signal and 240 fs for the NRZ-DPSK signal. The timing jitter of the recovered clock signal is characterized for different values of the input signal power and the input signal optical signal-to-noise ratio.
View Article and Find Full Text PDFExperimental results on wavelength-dependent angular dispersion in InGaAsP triangular lattice planar photonic crystals are presented. An abrupt variation of the angular dispersion is observed for TM-polarized waves whose frequencies are comprised between those of the fourth and sixth allowed bands. According to the crystal period, the measured angle of refraction is found to either decrease or increase by 30 degrees within a wavelength range smaller than 30 nm.
View Article and Find Full Text PDF