Chronic pain is commonly recognized as a distressing symptom or a standalone disease, with over half of those affected experiencing cognitive impairment, which significantly impacts their quality of life. Despite a recent surge in literature on cognitive impairment associated with chronic pain, a comprehensive bibliometric analysis in this field has yet to be conducted. In this study, we performed a bibliometric analysis on this topic.
View Article and Find Full Text PDFBackground: The gut microbiota may be involved in neuropathic pain. However, the causal association between gut microbiota and neuropathic pain remains unclear. Whether immune cells and inflammatory factors mediate the pathway from gut microbiota to neuropathic pain has not been elucidated.
View Article and Find Full Text PDFEur Arch Psychiatry Clin Neurosci
April 2024
Ketamine has demonstrated rapid and sustained antidepressant effects, marking its emergence as an innovative treatment of depression. Despite the growing number of preclinical and clinical studies exploring the antidepressant effects of ketamine and its enantiomers, a comprehensive bibliometric analysis in this field has yet to be conducted. This study employs bibliometric methods and visualization tools to examine the literature and identify key topics related to the antidepressant effects of ketamine and its enantiomers.
View Article and Find Full Text PDFBackground: Depression is a prevalent mood disorder during the perioperative period, with both preoperative concurrent depression and new-onset postoperative depression impacting postoperative recovery. Recent studies have indicated that the dissociative anesthetic esketamine may alleviate perioperative depressive symptoms.
Objective: This meta-analysis aimed to assess the efficacy and safety of esketamine in treating perioperative depression.
Neuropathic pain, a severe clinical symptom, significantly affects the quality of life in the patients. The molecular mechanisms underlying neuropathic pain have been the focus of research in recent decades; however, the neuronal circuit-mediated mechanisms associated with this disorder remain poorly understood. Here, we report that a projection from the lateral hypothalamus (LH) glutamatergic neurons to the lateral habenula (LHb), an excitatory LH-LHb neuronal circuit, participates in nerve injury-induced nociceptive hypersensitivity.
View Article and Find Full Text PDFKetamine, a commonly used general anesthetic, can produce rapid and sustained antidepressant effect. However, the efficacy and safety of the perioperative application of ketamine on postoperative depression remains uncertain. We performed a meta-analysis to determine the effect of perioperative intravenous administration of ketamine on postoperative depression.
View Article and Find Full Text PDFKetamine can produce rapid-acting antidepressant effects in treatment-resistant patients with depression. Although alterations in glutamatergic and GABAergic neurotransmission in the brain play a role in depression, the precise molecular mechanisms in these neurotransmission underlying ketamine's antidepressant actions remain largely unknown. Mice exposed to FSS (forced swimming stress) showed depression-like behavior and decreased levels of GABA (γ-aminobutyric acid), but not glutamate, in the hippocampus.
View Article and Find Full Text PDFType-2 cannabinoid receptors (CB2, encoded by the Cnr2 gene) are mainly expressed in immune cells, and CB2 agonists normally have no analgesic effect. However, nerve injury upregulates CB2 in the dorsal root ganglion (DRG), following which CB2 stimulation reduces neuropathic pain. It is unclear how nerve injury increases CB2 expression or how CB2 activity is transformed in neuropathic pain.
View Article and Find Full Text PDFSystemic treatment with resiniferatoxin (RTX) induces small-fiber sensory neuropathy by damaging TRPV1-expressing primary sensory neurons and causes distinct thermal sensory impairment and tactile allodynia, which resemble the unique clinical features of postherpetic neuralgia. However, the synaptic plasticity associated with RTX-induced tactile allodynia remains unknown. In this study, we found that RTX-induced neuropathy is associated with α2δ-1 upregulation in the dorsal root ganglion (DRG) and increased physical interaction between α2δ-1 and GluN1 in the spinal cord synaptosomes.
View Article and Find Full Text PDFChronic neuropathic pain is frequently accompanied by memory impairment, yet the underlying mechanisms remain unclear. Here, we showed that mice displayed memory impairment starting at 14 days and lasting for at least 21 days after chronic constriction injury (CCI) of unilateral sciatic nerve in mice. Systemic administration of the pan histone deacetylase (HDAC) inhibitor sodium butyrate attenuated this memory impairment.
View Article and Find Full Text PDFSystemic inflammation induces cognitive impairments via unclear mechanisms. Increasing evidence has suggested complement C3/C3a receptor signaling, a key component of innate immune pathogen defense, plays an important role in cognition and neurodegeneration, whereas its dysfunction is implicated in many neurological disorders. However, it remains unclear whether complement C3/C3a receptor signaling was involved in systemic inflammation-induced cognitive impairments.
View Article and Find Full Text PDFBackground: A subanesthetic dose of ketamine provides rapid and effective antidepressant effects, but the molecular mechanism remains elusive. It has been reported that overactivation of extrasynaptic GluN2B receptors is associated with the antidepressant effects of ketamine and the interaction between GluN2B and calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) is important for GluN2B localization and activity. Here, we tested whether changes of CaMKIIα and GluN2B are involved in the antidepressant effects of ketamine.
View Article and Find Full Text PDFBackground: Postoperative cognitive decline (POCD) is a recognized clinical phenomenon characterized by cognitive impairments in patients following anesthesia and surgery, yet its underlying mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal plasticity, learning, and memory via activation of TrkB-full length (TrkB-FL) receptors. It has been reported that an abnormal truncation of TrkB mediated by calpain results in dysregulation of BDNF/TrkB signaling and is associated with cognitive impairments in several neurodegenerative disorders.
View Article and Find Full Text PDFTo evaluate the effects of dezocine on the prevention of postoperative catheter-related bladder discomfort (CRBD). Ninety-six adult patients undergoing abdominal surgery with urinary catheterization under general anesthesia were randomized into dezocine and control (flurbiprofen) groups. The postoperative CRBD, pain score, sedation score and adverse effects were evaluated at 0, 1, 2 and 6 hrs after tracheal extubation.
View Article and Find Full Text PDFPatients suffering from neuropathic pain have a higher incidence of depression and cognitive decline. Although environment enrichment (EE) may be effective in the treatment of neuropathic pain, the precise mechanisms underlying its actions remain determined. The aim of the study was to examine the molecular mechanisms underlying the EE's beneficial effects in mice with neuropathic pain.
View Article and Find Full Text PDFNerve injury can induce memory impairment in mice. The aim of this research is to study the effect of environmental enrichment (EE) on long-term memory impairment in nerve-injured mice and the underlying mechanisms. Adult male C57BL/6 mice were received sham or chronic constriction injury (CCI) operation and reared in a standard environment (SE) or EE for 4 weeks after the operation.
View Article and Find Full Text PDFDepression is present in a large proportion of patients suffering from chronic pain, and yet the underlying mechanisms remain to be elucidated. Neuroligins (NLs), as a family of cell-adhesion proteins, are involved in synaptic formation and have been linked to various neuropsychiatric disorders. Here, we studied the alterations in NL1 and NL2 in the medial prefrontal cortex (mPFC), the anterior cingulate cortex (ACC), and the hippocampus in a rat model of neuropathic pain-induced depression, and whether ketamine, a rapid and robust antidepressant, could restore these abnormalities.
View Article and Find Full Text PDFPain and depression are frequently co-existent in clinical practice, yet the underlying mechanisms remain largely to be determined. Microglia activation and subsequent pro-inflammatory responses play a crucial role in the development of neuropathic pain and depression. The process of microglia polarization to the pro-inflammatory M1 or anti-inflammatory M2 phenotypes often occurs during neuroinflammation.
View Article and Find Full Text PDFBoth chronic pain and depression are debilitating diseases, which often coexist in clinic. However, current analgesics and antidepressants exhibit limited efficacy for this comorbidity. The present study aimed to investigate the effect of ketamine on the comorbidity of inflammatory pain and consequent depression-like behaviors in a rat model established by intraplantar administration of complete Freunds adjuvant (CFA).
View Article and Find Full Text PDFParvalbumin (PV) interneurons are critically involved in the cognitive processes. Based on prior investigations that environmental enrichment reverses impaired cognition after anesthetic exposure, we proposed that environmental enrichment protects PV interneurons and thereby improves sevoflurane-induced cognitive impairments. Six-day-old C57BL/6 male mice were exposed to 3 % sevoflurane or 30 % oxygen/air 2 h daily for 3 days from postnatal day 6 (P6) to P8.
View Article and Find Full Text PDFRationale: Growing evidence suggests that downregulated clearance of glutamate and signaling pathways involving brain-derived neurotrophic factor (BDNF) and its receptor TrkB play a role in morphological changes in the hippocampus of depressed patients. The N-methyl-D-aspartate (NMDA) receptor antagonist ketamine is the most attractive antidepressant, although precise mechanisms are unknown.
Objective: In this study, we examined whether hippocampal BDNF-TrkB signaling underlies the antidepressant effects of ketamine via upregulating glutamate transporter 1 (GLT-1) in rats, subjected to the chronic unpredictable stress (CUS) for 42 days.
Objectives: Active inflammatory responses play an important role in the pathogenesis of depression. We hypothesized that the rapid antidepressant effect of ketamine is associated with the down-regulation of pro-inflammatory mediators.
Methods: Forty-eight rats were equally randomized into six groups (a control and five chronic unpredictable mild stress (CUMS) groups) and given either saline or 10 mg/kg ketamine, respectively.
Accumulating evidence has demonstrated that single subanesthetic dose of ketamine exerts rapid, robust, and lasting antidepressant-like effects. Nevertheless, repeated subanesthetic doses of ketamine produce psychosis-like effects with dysfunction of parvalbumin (PV) interneurons. We hypothesized that PV interneurons play an important role in the antidepressant-like actions of ketamine, and different changes in PV interneurons occur with the antidepressant-like and propsychotic-like effects of ketamine.
View Article and Find Full Text PDFIncreasing evidence underscores the strong, rapid, and sustained antidepressant properties of ketamine with a good tolerability profile in patients with depression; however, the underlying mechanisms are not fully elucidated. Neuregulin 1 (NRG1) is a bipolar disorder susceptibility gene and a biomarker of major depressive disorder, which regulates pyramidal neuron activity via ErbB4 in parvalbumin interneurons. Moreover, NRG1-ErbB4 signaling is reported to play a key role in the modulation of synaptic plasticity through regulating the neurotransmission.
View Article and Find Full Text PDF