Publications by authors named "Guang-Ai Sun"

Based on molecular dynamics (MD) simulation, the binding energy, cohesive energy density (CED), bond length, and mechanical parameters were calculated for 2,6-diamino-3,5-dinitropyrazine-l-oxide (LLM-105) crystal, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystal, and their co-crystals under different temperatures. Three LLM-105/HMX patterns were constructed to investigate the influence of component proportion on structures and properties of co-crystals, in which the mole ratios of LLM-105 and HMX are 1:1, 1:2, and 2:1. The effect of temperature and components on the stability and sensitivity were investigated as well.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulation was conducted to research the effect of molar ratio on the thermal stability, mechanical properties, and detonation performance of HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane)/RDX (1,3,5-trinitro-1,3,5-triazacyco-hexane) cocrystal explosive at ambient condition. The binding energy, mechanical properties, and the detonation parameters of the pure β-HMX, RDX crystal, and the cocrystal models were got and contrasted. The results demonstrate that molar ratio has a great influence on the properties of the cocrystal system.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulation was conducted to research the effect of molar ratios for α/β-HMX, γ/β-HMX, and δ/β-HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) mixture systems on thermal stability, sensitivity, and mechanical properties of explosives, and the computing models were established by Materials Studio (MS). The binding energies, the maximum trigger bond length (L), cohesive energy density as well as mechanical properties of the mixture systems and the pure β-HMX crystal were obtained and contrasted. The results demonstrate that the molar ratios have great influence on the binding capacity of molecules between α, γ, δ-HMX, and β-HMX in the mixture systems.

View Article and Find Full Text PDF
Article Synopsis
  • Pressure-induced polymerization (PIP) of aromatics offers a new way to create sp -carbon frameworks and diamond-like nanothreads by compressing benzene and related compounds.
  • The research involved compressing a cocrystal of benzene and hexafluorobenzene, revealing the formation of H-F-substituted graphane with a layered structure at 20 GPa.
  • The reaction mechanism includes key steps like the [4+2] Diels-Alder reaction, which plays a crucial role in the PIP process, and the study provides new insights into the polymerization of aromatic compounds.
View Article and Find Full Text PDF

Ferrites-bismuth ferrite is an intriguing option for medical diagnostic imaging device due to its magnetoelectric and enhanced near-infrared fluorescent properties. However, the embedded XFO nanoparticles are randomly located on the BFO membranes, making implementation in devices difficult. To overcome this, we present a facile bio-approach to produce XFeO-BiFeO (XFO-BFO) (X = Cr, Mn, Co, or Ni) membranes using Shewanella oneidensis MR-1.

View Article and Find Full Text PDF

We perform detailed first principles calculations of the structural parameters at zero pressure and high pressure, the elastic properties, phonon dispersion relation, and ideal strengths of U2Mo with the C11b structure. In contrast to previous theoretical studies, we show that the I4/mmm structure is indeed a mechanically and dynamically unstable phase, which is confirmed by the negative elastic constant C66 as well as the imaginary phonon modes observed along the Σ1-N-P line. The calculations of ideal strengths for U2Mo are performed along the [100], [001], and [110] directions for tension and on (001)[010] and (010)[100] slip systems for shear load.

View Article and Find Full Text PDF