Publications by authors named "Guang hui Ma"

Orchids highly rely on mycorrhizal fungi for seed germination, and compatible fungi could effectively promote germination up to seedlings, while incompatible fungi may stimulate germination but do not support subsequent seedling development. In this study, we compared the fungal colonization process among two compatible and two incompatible fungi during seed germination of The two compatible fungi, i.e.

View Article and Find Full Text PDF

Prophylactic vaccines have evolved from traditional whole-cell vaccines to safer subunit vaccines. However, subunit vaccines still face problems, such as poor immunogenicity and low efficiency, while traditional adjuvants are usually unable to meet specific response needs. Advanced delivery vectors are important to overcome these barriers; they have favorable safety and effectiveness, tunable properties, precise location, and immunomodulatory capabilities.

View Article and Find Full Text PDF

A novel combined method of pre-cross-linking and surfactant micelles swelling was proposed in this study to fabricate highly cross-linked and macroporous agarose (HMA) microspheres. Agarose was chemically modified by allylglycidyl ether (AGE) as heterobifunctional cross-linker via its active glycidyl moieties before gel formation and pre-cross-linking was achieved. By this means, the effective concentration of cross-linker presented in agarose gel increased significantly, and thus cross-linking with a high-efficiency was achieved.

View Article and Find Full Text PDF

The transport of nanoparticles at bio-nano interfaces is essential for many cellular responses and biomedical applications. How two-dimensional nanomaterials, such as graphene and transition-metal dichalcogenides, diffuse along the cell membrane is, however, unknown, posing an urgent and important issue to promote their applications in the biomedical area. Here, we show that the transport of graphene oxides (GOs) sandwiched inside cell membranes varies from Brownian to Lévy and even directional dynamics.

View Article and Find Full Text PDF

In this study, we developed the quaternized chitosan microgels without chemical crosslinking as an adjuvant of H5N1 split vaccine. The microgels with pH-sensitivity, positive surface charge and good biocompatibility, have been demonstrated in favor of enhancing both humoral and cellular immune response. However, the detailed mechanism of the chitosan-based microgels to enhance antigen specific immune responses remains unclear.

View Article and Find Full Text PDF

Hand, foot and mouth disease (HFMD) is a serious, highly contagious disease. HFMD caused by Enterovirus 71 (EV71), results in severe complications and even death. The pivotal role of EV71 3C in the viral life cycle makes it an attractive target for drug discovery and development to treat HFMD.

View Article and Find Full Text PDF

Infectious diseases possess a big threat to the livestock industry worldwide. Currently, inactivated veterinary vaccines have attracted much attention to prevent infection due to their safer profile compared to live attenuated vaccine. However, its intrinsic poor immunogenicity demands the incorporation of an adjuvant.

View Article and Find Full Text PDF

In recent years, emulsions stabilized by micro- or nanoparticles (known as Pickering emulsions) have attracted much attention. Micro- or nanoparticles, as the main components of the emulsion, play a key role in the preparation and application of Pickering emulsions. The existence of particles at the interface between the oil and aqueous phases affects not only the preparation, but also the properties of Pickering emulsions, affording superior stability, low toxicity, and stimuli-responsiveness compared to classical emulsions stabilized by surfactants.

View Article and Find Full Text PDF

Our work here, for the first time, reported the use of chitosan-mediated biomimetic silica nanoparticles in enzyme immobilization. In order to make clear the relationship among silicification process, silica nanoparticle structure and immobilized enzyme activity, a mechanism of chitosan-mediated silicification using sodium silicate as the silica source was primarily evaluated. Chitosan was demonstrated effectively to promote the silicification not only in accelerating the aggregation rate of sodium silicate, but also in templating the formation of silica nanoparticles.

View Article and Find Full Text PDF

Novel hybrid magnetic cross-linked enzyme aggregates of phenylalanine ammonia lyase (HM-PAL-CLEAs) were developed by co-aggregation of enzyme aggregates with magnetite nanoparticles and subsequent crosslinking with glutaraldehyde. The HM-PAL-CLEAs can be easily separated from the reaction mixture by using an external magnetic field. Analysis by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) indicated that PAL-CLEAs were inlayed in nanoparticle aggregates.

View Article and Find Full Text PDF

Protein structure in nanopores is an important determinant in porous substrate utilization in biotechnology and materials science. To date, accurate residue details of pore curvature induced protein binding and unfolding were still unknown. Here, a multiscale ensemble of chromatography, NMR hydrogen and deuterium (H/D) exchange, confocal scanning and molecular docking simulations was combined to obtain the protein adsorption information induced by pore size and curvature.

View Article and Find Full Text PDF

We report a facile method for preparing porous structured TiO2 materials by templating from Pickering high-internal phase emulsions (HIPEs). A Pickering HIPE with an internal phase of up to 80 vol %, stabilized by poly(N-isopropylacrylamide)-based microgels and TiO2 solid nanoparticles, was first formulated and employed as a template to prepare the porous TiO2 materials with an interconnected structure. The resultant materials were characterized by scanning electron microscopy, X-ray diffraction, and mercury intrusion.

View Article and Find Full Text PDF

Aiming to enhance the immunogenicity of H5N1 split vaccine, the development of a novel antigen delivery system based on quaternized chitosan hydrogel microparticles (Gel MPs) with multiple mechanisms of immunity enhancement is attempted. Gel MPs based on ionic cross-linking are prepared in a simple and mild way. Gel MPs are superior as a vaccine delivery system due to their ability to: 1) enhance cellular uptake and endosomal escape of antigens in dendritic cells (DCs); 2) significantly activate DCs; 3) form an antigen depot and recruit immunity cells to improve antigen capture.

View Article and Find Full Text PDF
Article Synopsis
  • Mangrove actinomycetes show potential for producing bioactive compounds, particularly halogenated metabolites, based on genetic screening and antimicrobial testing of 163 isolated strains.
  • Identification of specific genes, like FADH2-dependent halogenases, suggests these organisms can create diverse antibiotics by pairing them with other biosynthetic pathways like PKS or NRPS.
  • The study successfully confirmed a new actinomycete producer of enduracidin and mapped out an ansamycin biosynthesis gene cluster, demonstrating the effectiveness of genome mining in discovering valuable natural products.
View Article and Find Full Text PDF

Whole cell tumor vaccine (WCTV), as a potential treatment modality, elicits limited immune responses because of the poor immunogenicity. To address this issue, researchers have attempted to transduce a cytokine adjuvant into tumor cells, but these single-adjuvant WCTVs curtail the high expectations. In present study, we constructed a multi-adjuvant WCTV based on the nanoparticles modified with cell penetrating peptide, which could facilitate the transportation of granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin 2 (IL-2) into tumor cells.

View Article and Find Full Text PDF

Clinical applications of siRNA are being hindered by poor intracellular uptake and enzymatic degradation. To address these problems, we devised an oral delivery system for telomerase reverse transcriptase siRNA using N-((2-hydroxy-3-trimethylammonium) propyl) chitosan chloride (HTCC) nanoparticles (HNP). Both the porous structure and the positive charge of HNP facilitated siRNA encapsulation.

View Article and Find Full Text PDF

The National Key Laboratory of Biochemical Engineering established in 1995 is affiliated with the Institute of Process Engineering, Chinese Academy of Sciences (CAS), and located in Zhong-guan-cun (Beijing, China). The National Key Laboratory of Biochemical Engineering is working towards developments in the fields of bio-reaction, bioseparation and bio-formulation, by chemical and material methods. Over the last 5 years, approximately 200 scientists and students have worked at the laboratory, and published over 400 articles.

View Article and Find Full Text PDF

The microcosmic mechanisms of protein (recombinant human growth hormone, rhGH) incomplete release and stability from amphiphilic poly(monomethoxypolyethylene glycol-co-D,L-lactide) (mPEG-PLA, PELA) microspheres were investigated. PELA with different hydrophilicities (PELA-1, PELA-2, and PELA-3) based on various ratios of mPEG to PLA were employed to prepare microspheres exhibiting a narrow size distribution using a combined double emulsion and premix membrane emulsification method. The morphology, rhGH encapsulation efficiency, in vitro release profile, and rhGH stability of PELA microspheres during the release were characterized and compared in detail.

View Article and Find Full Text PDF

A method is herein proposed to produce biodegradable microcapsules by a self-healing of porous microspheres, which were prepared from water-in-oil-in-water (W/O/W) double-emulsion templates. Methoxypoly(ethylene glycol)--poly-dl-lactide (PELA) was dissolved in ethyl acetate (EA) as the oil phase (O) of double emulsion, NaCl and poly(vinyl acetate) aqueous solutions serving as internal and external water phases (W and W), respectively. Porous PELA microspheres were prepared by a two-step emulsification and solvent extraction method.

View Article and Find Full Text PDF

Poor delivery of insoluble anticancer drugs has so far precluded their clinical application. In this study, we developed a tumor-targeting delivery system for insoluble drug (paclitaxel, PTX) by PEGylated O-carboxymethyl-chitosan (CMC) nanoparticles grafted with cyclic Arg-Gly-Asp (RGD) peptide. To improve the loading efficiency (LE), we combined O/W/O double emulsion method with temperature-programmed solidification technique and controlled PTX within the matrix network as in situ nanocrystallite form.

View Article and Find Full Text PDF

Clinical application of paclitaxel (PTX) is limited because of its poor solubility in aqueous media. To overcome this hurdle, we devised an oral delivery system by encapsulating PTX into N-((2-hydroxy-3-trimethylammonium) propyl) chitosan chloride (HTCC) nanoparticles. These nanoparticles were small (~130 nm), had a narrow size distribution, and displayed high loading efficiency owing to the homogeneous distribution of PTX nanocrystals.

View Article and Find Full Text PDF

Chitosan-based nanoparticles (NPs) are widely used in drug delivery, device-based therapy, tissue engineering, and medical imaging. In this aspect, a clear understanding of how physicochemical properties of these NPs affect the cytological response is in high demand. The objective of this study is to evaluate the effect of surface charge on cellular uptake profiles (rate and amount) and intracellular trafficking.

View Article and Find Full Text PDF