An excess of reactive oxygen species (ROS), leading to oxidative stress, is a major factor in aging. Antioxidant therapies are considered crucial for delaying aging. Nanoceria, a nanozyme with antioxidant activity, holds significant potential in protecting cells from oxidative stress-induced damage.
View Article and Find Full Text PDFSilk and polycaprolactone (PCL), derived from natural and synthetic sources, respectively, are suture materials commonly used in surgery. Beyond their application in sutures, they are also compelling subjects in regenerative medicine and tissue engineering. This study evaluated the effects of degummed silk microfibers compared to electrospun PCL microfibers of a similar diameter on chondrocyte behavior.
View Article and Find Full Text PDFECM stiffness significantly influences the differentiation of adipose-derived stem cells (ADSCs), with YAP-a key transcription factor in the Hippo signaling pathway-playing a pivotal role. This study investigates the effects of ECM stiffness on ADSC differentiation and its relationship with YAP signaling. Various hydrogel concentrations were employed to simulate different levels of ECM stiffness, and their impact on ADSC differentiation was assessed through material properties, adipocyte-specific gene expression, lipid droplet staining, YAP localization, and protein levels.
View Article and Find Full Text PDFTissue Eng Regen Med
December 2021
Brain diseases and damages come in many forms such as neurodegenerative diseases, tumors, and stroke. Millions of people currently suffer from neurological diseases worldwide. While Challenges of current diagnosis and treatment for neurological diseases are the drug delivery to the central nervous system.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
April 2021
Among many factors of controlling stem cell differentiation, the key transcription factor upregulation via physical force is a good strategy on the lineage-specific differentiation of stem cells. The study aimed to compare growth and myogenic potentials between the parental cells (PCs) and the 1-day-old C2C12 spheroid-derived cells (SDCs) in two-dimensional (2D) and three-dimensional (3D) culture conditions through examination of the cell proliferation and the expression of myogenic genes. The data showed that 1-day-old spheroids had more intense expression of MyoD gene with respect to the PCs.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2020
Osteoarthritis (OA) is a common chronic joint disease that is characterized by joint pain and stiffness, and limitation of motion and the major cause of disability, which reduces life quality of patients and brings a large economic burden to the family and society. Current clinical treatment is mostly limited to symptomatic treatment aimed at pain alleviation and functional improvement, rather than suppressing the progression of OA. Nanotechnology is a promising strategy for the treatment of OA.
View Article and Find Full Text PDFCancer stem cells have been shown to be important in tumorigenesis processes, such as tumor growth, metastasis, and recurrence. As such, many three-dimensional models have been developed to establish an microenvironment that cancer stem cells experience under conditions. Cancer stem cells propagating in three-dimensional culture systems show physiologically related signaling pathway profiles, gene expression, cell-matrix and cell-cell interactions, and drug resistance that reflect at least some of the tumor properties seen .
View Article and Find Full Text PDFBrain diseases including neurodegenerative disorders and tumours are among the most serious health problems, degrading the quality of life and causing massive economic cost. Nanoparticles that load and deliver drugs and genes have been intensively studied for the treatment of brain diseases, and have demonstrated some biological effects in various animal models. Among other efforts taken in the nanoparticle development, targeting of blood brain barrier, specific cell type or local intra-/extra-cellular space is an important strategy to enhance the therapeutic efficacy of the nanoparticle delivery systems.
View Article and Find Full Text PDFFor skeletal muscle engineering, scaffolds that can stimulate myogenic differentiation of cells while possessing suitable mechanical properties (e.g. flexibility) are required.
View Article and Find Full Text PDFBone/cartilage interfacial tissue engineering needs to satisfy the differential properties and architectures of the osteochondral region. Therefore, biphasic or multiphasic scaffolds that aim to mimic the gradient hierarchy are widely used. Here, we find that two differently structured (topographically) three-dimensional scaffolds, namely, "dense" and "nanofibrous" surfaces, show differential stimulation in osteo- and chondro-responses of cells.
View Article and Find Full Text PDFDedifferentiation of chondrocytes remains a major problem in cartilage tissue engineering. The development of hydrogels that can preserve chondrogenic phenotype and prevent chondrocyte dedifferentiation is a meaningful strategy to solve dedifferentiation problem of chondrocytes. In the present study, three gels were prepared (alginate gel (Alg gel), type I collagen gel (Col gel), and their combination gel (Alg/Col gel)), and the in vitro efficacy of chondrocytes culture while preserving their phenotypes was investigated.
View Article and Find Full Text PDFThe temporomandibular joint disorder, also known as myofascial pain syndrome, is considered one of the prevalent chronic pain diseases caused by muscle inflammation and cartilage degradation in head and neck, and thus influences even biopsychosocial conditions in a lifetime. There are several current treatment methodologies relieving inflammation and preventing degradation of the joint complex. One of the promising non-surgical treatment methods is an intra-articular injection of drugs such as corticosteroids, analgesics, and anti-depressants.
View Article and Find Full Text PDFFor the cartilage repair, the cell sources currently adopted are primarily chondrocytes or mesenchymal stem cells (MSCs). Due to the fact that chondrocytes dedifferentiate during 2-dimensional (2D) expansion, MSCs are generally more studied and considered to have higher potential for cartilage repair purposes. Here we question if the dedifferentiated chondrocytes can regain the chondrogenic potential, to find potential applications in cartilage repair.
View Article and Find Full Text PDFIt is controversial whether type I collagen itself can maintain and improve chondrogenic phenotype of chondrocytes in a three-dimensional (3D) environment. In this study, we examined the effect of type I collagen concentration in hydrogel (0.5, 1, and 2 mg/ml) on the growth and phenotype expression of rat chondrocytes .
View Article and Find Full Text PDFDelivery of stem cells with osteogenesis while enabling angiogenesis is important for vascularized bone tissue engineering. Here a three-dimensional (3D) co-culture system of dental pulp stem cells (DPSCs) and endothelial cells (ECs) was designed using porous microcarriers, and the feasibility of applying to bone tissue engineering was investigated . Highly porous spherical microcarriers made of degradable biopolymers were prepared with sizes of hundreds of micrometers.
View Article and Find Full Text PDFAngiogenic capacity of biomaterials is a key asset to drive vascular ingrowth during tissue repair and regeneration. Here we design a unique angiogenic microcarrier based on sol-gel derived mesoporous silica. The microspheres offer a potential angiogenic stimulator, Si ion, 'intrinsically' within the chemical structure.
View Article and Find Full Text PDFArticular cartilage has limited regeneration capacity, thus significant challenge has been made to restore the functions. The development of hydrogels that can encapsulate and multiply cells, and then effectively maintain the chondrocyte phenotype is a meaningful strategy to this cartilage repair. In this study, we prepared alginate-hyaluronic acid based hydrogel with type I collagen being incorporated, namely Alg-HA-Col composite hydrogel.
View Article and Find Full Text PDFTherapeutically relevant design of scaffolds is of special importance in the repair and regeneration of tissues including dentin and pulp. Here we exploit nanofiber matrices that incorporate bioactive glass nanoparticles (BGNs) and deliver the odontogenic drug dexamethasone (DEX) to stimulate the odontogenic differentiation of human dental pulp cells (HDPCs). DEX molecules were first loaded onto the BGN, and then the DEX-BGN complex was incorporated within the biopolymer nanofiber matrix through electrospinning.
View Article and Find Full Text PDFAdipose-derived stem cells (ADSCs) are an attractive source of material for mesenchymal stem cell research due to the abundance of adipose and relative ease of access compared with bone marrow. A key consideration for research is whether cell isolation methods can be improved, to reduce the process steps needed to isolate and expand cell material. In the current study, we used macroporous biopolymer microcarriers to isolate primary ADSCs.
View Article and Find Full Text PDFCartilage repair is substantially intractable due to poor self-healing ability. Porous microspheres can be a fascinating three-dimensional matrix for cell culture and injectable carrier in cartilage engineering. In this study, we assessed the feasible use of porous biopolymer microspheres for chondrocyte carriers.
View Article and Find Full Text PDFMagnetism has recently been implicated to play significant roles in the regulation of cell responses. Allowing cells to experience a magnetic field applied externally or scaffolding them in a material with intrinsic magnetic properties has been a possible way of utilizing magnetism. Here we aim to investigate the combined effects of the external static magnetic field (SMF) with magnetic nanocomposite scaffold made of polycaprolactone/magnetic nanoparticles on the osteoblastic functions and bone formation.
View Article and Find Full Text PDFBiocompatible nanostructured surfaces control the cell behaviors and tissue integration process of medical devices and implants. Here we develop a novel biocompatible nanostructured surface based on mesoporous silica nanotube (MSNT) by means of an electrodeposition. MSNTs, replicated from carbon nanotubes of 25 nm × 1200 nm size, were interfaced in combination with fugitive biopolymers (chitosan or collagen) onto a Ti metallic substrate.
View Article and Find Full Text PDFNanoscale scaffolds that characterize high bioactivity and the ability to deliver biomolecules provide a 3D microenvironment that controls and stimulates desired cellular responses and subsequent tissue reaction. Herein novel nanofibrous hybrid scaffolds of polycaprolactone shelled with mesoporous silica (PCL@MS) were developed. In this hybrid system, the silica shell provides an active biointerface, while the 3D nanoscale fibrous structure provides cell-stimulating matrix cues suitable for bone regeneration.
View Article and Find Full Text PDF