Publications by authors named "Guang Huan Tu"

Agonistic antibodies targeting the tumor necrosis factor (TNF) superfamily of co-stimulatory receptors (TNFRSF) are progressing through various stages of clinical development for cancer treatment, but the desired and defining features of these agents for optimal biological activity remain controversial. One idea, based on recent studies with CD40, is that non-ligand-blocking antibodies targeting membrane-distal cysteine-rich domain 1 (CRD1) have superior agonistic activities compared with ligand-blocking antibodies targeting more membrane-proximal CRDs. Here, we determined the binding and functional characteristics of a panel of antibodies targeting CRDs 1-4 of OX40 (also known as TNFRSF4 or CD134).

View Article and Find Full Text PDF

Non-human primate models of human disease have an important role in the translation of a new scientific finding in lower species into an effective treatment. In this study, we tested a new therapeutic antibody against the IL-7 receptor α chain (CD127), which in a C57BL/6 mouse model of experimental autoimmune encephalomyelitis (EAE) ameliorates disease, demonstrating an important pathogenic function of IL-7. We observed that while the treatment was effective in 100 % of the mice, it was only partially effective in the EAE model in common marmosets (Callithrix jacchus), a small-bodied Neotropical primate.

View Article and Find Full Text PDF

Immunotherapies targeting the programmed death 1 (PD-1) coinhibitory receptor have shown great promise for a subset of patients with cancer. However, robust and safe combination therapies are still needed to bring the benefit of cancer immunotherapy to broader patient populations. To search for an optimal strategy of combinatorial immunotherapy, we have compared the antitumor activity of the anti-4-1BB/anti-PD-1 combination with that of the anti-PD-1/anti-LAG-3 combination in the poorly immunogenic B16F10 melanoma model.

View Article and Find Full Text PDF

Genetic variation in the IL-7 receptor-α (IL-7R) gene is associated with susceptibility to human type 1 diabetes (T1D). Here we investigate the therapeutic efficacy and mechanism of IL-7Rα antibody in a mouse model of T1D. IL-7Rα antibody induces durable, complete remission in newly onset diabetic mice after only two to three injections.

View Article and Find Full Text PDF

The interleukin-7 receptor α chain (IL-7Rα) gene was identified as a top non-major histocompatibility complex-linked risk locus for multiple sclerosis (MS). Recently, we showed that a T helper 1 (T(H)1)-driven, but not a T(H)17-driven, form of MS exhibited a good clinical response to interferon-β (IFN-β) therapy. We now demonstrate that high serum levels of IL-7, particularly when paired with low levels of IL-17F, predict responsiveness to IFN-β and hence a T(H)1-driven subtype of MS.

View Article and Find Full Text PDF

A critical factor in clinical development of cancer immunotherapies is the identification of tumor-associated antigens that may be related to immunotherapy potency. In this study, protein microarrays containing >8,000 human proteins were screened with serum from prostate cancer patients (N = 13) before and after treatment with a granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting whole cell immunotherapy. Thirty-three proteins were identified that displayed significantly elevated (P View Article and Find Full Text PDF

Monoclonal antibody (mAb) delivery by gene transfer in vivo may be an attractive alternative to current mAb therapies for applications that require long-term therapy. This article describes a transfer system that allows inducible high-level expression of unmodified mAbs in vivo. A recombinant adeno-associated viral (rAAV) vector is used that comprises an expression cassette consisting of a dimerizer-regulated promoter that drives expression of the antibody heavy and light chains linked by a 2A self-processing peptide and a furin cleavage site.

View Article and Find Full Text PDF

Regulated gene expression may be required for the clinical development of certain gene therapies. Several approaches have been developed that allow pharmacologic control of transgene expression, including the dimerizer-regulated transcriptional system in which rapamycin or its analogs function as transcriptional inducers. These compounds can also act as direct antitumor agents via inhibition of mammalian target of rapamycin (mTOR).

View Article and Find Full Text PDF

Purpose: The purpose of the present study was to evaluate granulocyte macrophage colony-stimulating factor (GM-CSF)-secreting tumor cell immunotherapy in combination with vascular endothelial growth factor (VEGF) blockage in preclinical models.

Experimental Design: Survival and immune response were monitored in the B16 melanoma and the CT26 colon carcinoma models. VEGF blockade was achieved by using a recombinant adeno-associated virus vector expressing a soluble VEGF receptor consisting of selected domains of the VEGF receptors 1 and 2 (termed sVEGFR1/R2).

View Article and Find Full Text PDF

The presence of the blood-brain barrier complicates drug delivery in the development of therapeutic agents for the treatment of glioblastoma multiforme (GBM). The use of local gene transfer in the brain has the potential to overcome this delivery barrier by allowing the expression of therapeutic agents directly at the tumor site. In this study, we describe the development of a recombinant adeno-associated (rAAV) serotype 8 vector that encodes an optimized soluble inhibitor, termed sVEGFR1/R2, of vascular endothelial growth factor (VEGF).

View Article and Find Full Text PDF

The presence of metastases in regional lymph nodes is a strong indicator of poor patient survival in many types of cancer. It has recently been shown that the lymphangiogenic growth factor, vascular endothelial growth factor-C (VEGF-C), and its receptor, VEGF receptor-3 (VEGFR3), may play a pivotal role in the promotion of metastasis to regional lymph nodes. In this study, human prostate and melanoma tumor models that preferentially metastasize to the lymph nodes following s.

View Article and Find Full Text PDF

Therapeutic monoclonal antibodies (mAbs) are currently being developed for the treatment of cancer and other diseases. Despite clinical success, widespread application of mAb therapies may be limited by manufacturing capabilities. In this paper, we describe a mAb delivery system that allows continuous production of a full-length antibody at high-concentrations in vivo after gene transfer.

View Article and Find Full Text PDF