Publications by authors named "Guandong Zhang"

Colon cancer is one of the most commonly diagnosed cancers and is recognized as the most aggressive tumor of the digestive system. Aberrant activation of signal transducer and activator of transcription 3 (STAT3) is associated with proliferation, metastasis and immunosuppression of the tumor cells. Here, to inhibit the STAT3 pathway and suppress metastasis in colon cancer cells, the half-sandwich iridium complex Ir-ART containing an artesunate-derived ligand was synthesized.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer, which owned severe resistance to platinum-based anticancer agents. Herein, we report a new metal-arene complex, Ru-TPE-PPh, which can be synthesized in vitro and in living cells with copper catalyzed the cycloaddition reaction of Ru-azide and alkynyl (CuAAC). The complex Ru-TPE-PPh exhibited superior inhibition of the proliferation of TNBC MDA-MB-231 cells with an IC value of 4.

View Article and Find Full Text PDF

Dual suppression of oxidative phosphorylation (OXPHOS) and glycolysis can disrupt metabolic adaption of cancer cells, inhibiting energy supply and leading to successful cancer therapy. Herein, we have developed an α-tocopheryl succinate (α-TOS)-functionalized iridium(III) complex Ir2, a highly lipophilic mitochondria targeting anticancer molecule, could inhibit both oxidative phosphorylation (OXPHOS) and glycolysis, resulting in the energy blockage and cancer growth suppression. Mechanistic studies reveal that complex Ir2 induces reactive oxygen species (ROS) elevation and mitochondrial depolarization, and triggers DNA oxidative damage.

View Article and Find Full Text PDF

Metallodrug resistance has attracted a great deal of attention in cancer treatment. According to the cisplatin (cis-Pt) anticancer mechanism, a new strategy to overcome cis-Pt resistance through mitochondrial dysfunction is proposed. Two mitochondria-targeted aggregation-induced emission fluorogens (AIEgens) were first synthesized, named DP-PPh and TPE-PPh, which showed superior capacities to overcome the cis-Pt resistance of lung cancer cells (A549R) by the alteration of drug metabolism (up-regulation of influx CTR1 and down-regulation of efflux MRP2) and blockage of autophagic flux (failure of the degradation of autophagosomes).

View Article and Find Full Text PDF

Theranostic anticancer agents with dual functions of diagnosis and therapy are in highly demand for breast cancer. Herein, a triphenylphosphonium (TPP)-decorated aggregation-induced emission (AIE)-based Pt(IV) prodrug ACPt was developed, which exhibited superior anticancer performance with novel anticancer mechanism of dual modulation of apoptosis and autophagy inhibition. The experimental data showed that ACPt induced increased reactive oxygen species (ROS), and decreased mitochondrial membrane potential (MMP).

View Article and Find Full Text PDF

In mainland China, there remains a shortage of pediatric drugs. The Chinese government has recently launched policies and incentives to encourage pediatric drug development and clinical trials. However, data on the characteristics or development trends of these trials are limited.

View Article and Find Full Text PDF

Data quality control and preprocessing are often the first step in processing next-generation sequencing (NGS) data of tumors. Not only can it help us evaluate the quality of sequencing data, but it can also help us obtain high-quality data for downstream data analysis. However, by comparing data analysis results of preprocessing with Cutadapt, FastP, Trimmomatic, and raw sequencing data, we found that the frequency of mutation detection had some fluctuations and differences, and human leukocyte antigen (HLA) typing directly resulted in erroneous results.

View Article and Find Full Text PDF

Nanoparticle uptake and distribution to solid tumors are limited by reticuloendothelial system systemic filtering and transport limitations induced by irregular intra-tumoral vascularization. Although vascular enhanced permeability and retention can aid targeting, high interstitial fluid pressure and dense extracellular matrix may hinder local penetration. Extravascular diffusivity depends upon nanoparticle size, surface modifications, and tissue vascularization.

View Article and Find Full Text PDF

Hypothesis: A facile, dialysis-based synthesis of stable near infrared (nIR) absorbing plasmonic gold nanoparticles (λmax=650-1000 nm) will increase the yield of nIR particles and reduce the amount of gold colloid contaminant in the product mixture.

Experiments: Chloroauric acid and sodium thiosulfate were reacted using a dialysis membrane as a reaction vessel. Product yield and composition was determined and compared to traditional synthesis methods.

View Article and Find Full Text PDF

Nano-scale particles sized 10-400 nm administered systemically preferentially extravasate from tumor vasculature due to the enhanced permeability and retention effect. Therapeutic success remains elusive, however, because of inhomogeneous particle distribution within tumor tissue. Insufficient tumor vascularization limits particle transport and also results in avascular hypoxic regions with non-proliferating cells, which can regenerate tissue after nanoparticle-delivered cytotoxicity or thermal ablation.

View Article and Find Full Text PDF

Gold nanoparticles and near infrared-absorbing light are each innocuous to tissue but when combined can destroy malignant tissue while leaving healthy tissue unharmed. This study investigated the feasibility of photothermal ablation therapy for esophageal adenocarcinoma using chitosan-coated gold/gold sulfide (CS-GGS) nanoparticles. A rat esophagoduodenal anastomosis model was used for the in vivo ablation study, and three human esophageal cell lines were used to study the response of cancer cells and benign cells to near infrared light after treatment with CS-GGS.

View Article and Find Full Text PDF

Unlabelled: Gold nanoparticles (GNPs) with near infrared (NIR) plasmon resonance have been promisingly used in photothermal cancer therapy as a less invasive treatment. Recombinant Protein-G (ProG) was PEGylated to act as a cofactor to immobilize immunoglobulins (IgGs) on GNPs by the Fc region, resulting in optimal orientation of IgGs for efficient cancer targeting. In-vitro studies showed that HER-2 overexpressing breast cancer cells, SK-BR-3, were efficiently targeted and ablated at a laser power of 900 J/cm(2) (5 W/cm(2) for 3 min).

View Article and Find Full Text PDF

In the quest for producing an effective clinically relevant therapeutic agent, scalability, repeatability, and stability are paramount. In this paper, gold nanoparticles (GNPs) with precisely controlled near infrared (NIR) absorption are synthesized by a single step reaction of HAuCl4 and Na2S2O3, without assistance of additional templates, capping reagents or seeds. The anisotropy in the shape of gold nanoparticles offers high NIR absorption making it therapeutically relevant.

View Article and Find Full Text PDF

Gold-gold sulfide nanoparticles (GGS-NPs) fabricated from chloroauric acid and sodium thiosulfate show unique near infrared (NIR) absorption that renders them as a promising candidate for photothermal cancer therapy. To improve targeting efficiency, we developed a versatile method to allow ordered immunoconjugation of antibodies on the surfaces of these nanoparticles via a PEGylated recombinant Protein G (ProG). The PEGylated ProG was prepared with orthopyridyldisulfide-polyethylene glycol-succinimidyl valerate, average MW 2000 (OPSS-PEG-SVA), to first allow the self-assembly of ProG on the nanoparticles, subsequently antibodies were added to this construct to enable active targeting.

View Article and Find Full Text PDF

This paper describes the synthesis and surface engineering of core/shell-type iron/iron oxide nanoparticles for magnetic hyperthermia cancer therapy. Iron/iron oxide nanoparticles were synthesized from microemulsions of NaBH(4) and FeCl(3), followed by surface modification in which a thin hydrophobic hexamethyldisilazane layer - used to protect the iron core - replaced the CTAB coating on the particles. Phosphatidylcholine was then assembled on the nanoparticle surface.

View Article and Find Full Text PDF