Hospitals need to invest a lot of manpower to manually input the contents of medical invoices (nearly 300,000,000 medical invoices a year) into the medical system. In order to help the hospital save money and stabilize work efficiency, this paper designed a system to complete the complicated work using a Gaussian blur and smoothing-convolutional neural network combined with a recurrent neural network (GBS-CR) method. Gaussian blur and smoothing (GBS) is a novel preprocessing method that can fix the breakpoint font in medical invoices.
View Article and Find Full Text PDFIn order to solve the problem of face recognition in complex environments being vulnerable to illumination change, object rotation, occlusion, and so on, which leads to the imprecision of target position, a face recognition algorithm with multi-feature fusion is proposed. This study presents a new robust face-matching method named SR-CNN, combining the rotation-invariant texture feature (RITF) vector, the scale-invariant feature transform (SIFT) vector, and the convolution neural network (CNN). Furthermore, a graphics processing unit (GPU) is used to parallelize the model for an optimal computational performance.
View Article and Find Full Text PDF