Intermetallic compounds are emerging as promising oxygen reduction reaction (ORR) catalysts for fuel cells due to their typically higher activity and durability compared to disordered alloys. However, the preparation of intermetallic catalysts often requires high-temperature annealing, which unfortunately leads to adverse sintering of the metal nanoparticles. Herein, we develop a scalable site-selective sulfur anchoring strategy that effectively suppresses alloy sintering, ensuring the formation of efficient intermetallic electrocatalysts with small sizes and high ordering degrees.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2023
Palladium-based nanocatalysts play an important role in catalyzing the cathode oxygen reduction reaction (ORR) for fuel cells working under alkaline conditions, but the performance still needs to be improved to meet the requirements for large-scale applications. Herein, Au@Pd core-shell nanowires have been developed by coating Pd atomic layers on ultrafine gold nanowires and display outstanding electrocatalytic performance towards alkaline ORR. It is found that Pd overlayers with atomic thickness can be coated on 3 nm Au nanowires under CO atmosphere and completely cover the surfaces.
View Article and Find Full Text PDF