Publications by authors named "Guan-Jun Ding"

Background: Women are known to be at higher risk for gallbladder disease than men, suggesting a role of female hormones in the pathogenesis of gallbladder disease. This study aimed to assess menopausal characteristics, hormone replacement therapy (HRT) and their joint effect on long-term risk of cholecystectomy in women.

Methods: A total of 184,677 women were included from the UK Biobank.

View Article and Find Full Text PDF

α-Fe2O3 nanosheet-assembled hierarchical hollow mesoporous microspheres (HHMSs) were prepared by thermal transformation of nanosheet-assembled hierarchical hollow mesoporous microspheres of a precursor. The precursor was rapidly synthesized using FeCl3·6H2O as the iron source, ethanolamine (EA) as the alkali source, and ethylene glycol (EG) as the solvent by the microwave-assisted solvothermal method. The samples were characterized by X-ray powder diffraction (XRD), thermogravimetric (TG) analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption isotherm.

View Article and Find Full Text PDF

A facile and environmentally friendly approach has been developed to prepare yolk-shell porous microspheres of calcium phosphate by using calcium L-lactate pentahydrate (CL) as the calcium source and adenosine 5'-triphosphate disodium salt (ATP) as the phosphate source through the microwave-assisted hydrothermal method. The effects of the concentration of CL, the microwave hydrothermal temperature, and the time on the morphology and crystal phase of the product are investigated. The possible formation mechanism of yolk-shell porous microspheres of calcium phosphate is proposed.

View Article and Find Full Text PDF

Calcium phosphate biomaterials are very promising for various biomedical applications owing to their excellent biocompatibility and biodegradability. Calcium phosphate nanostructured materials with a porous and hollow structure are excellent drug carriers due to their advantages such as high biocompatibility, large specific surface area, nanosized channels for drug loading and release, high drug loading capacity and pH-responsive drug release behavior. In this work, porous hollow microspheres of amorphous calcium phosphate have been successfully prepared by the microwave-assisted hydrothermal method using adenosine triphosphate disodium salt, CaCl and soybean lecithin in aqueous solution.

View Article and Find Full Text PDF

Magnesium phosphate biomaterial, as an alternative to well-known calcium phosphate biomaterials, is an excellent candidate for biomedical applications, owing to its outstanding biocompatibility and biodegradability. Herein, we report a simple strategy for the rapid synthesis of magnesium phosphate hydrate nanosheets (MPHSs) using the microwave-assisted hydrothermal method. This method is facile, rapid, surfactant-free and environmentally friendly.

View Article and Find Full Text PDF

Amorphous calcium phosphate (ACP) microspheres with a porous and hollow structure have been prepared using an aqueous solution containing CaCl2 as a calcium source, adenosine triphosphate disodium salt (Na2ATP) as a phosphorus source in the presence of a block copolymer methoxyl poly(ethylene glycol)-block-poly(D,L-lactide) (mPEG-PLA) by the microwave-assisted hydrothermal method. The effects of microwave hydrothermal temperature and the concentrations of CaCl2 and Na2ATP on the crystal phase and morphology of the product are investigated. The as-prepared ACP porous hollow microspheres have a relatively high specific surface area of 232.

View Article and Find Full Text PDF