A novel continuous-variable quantum passive optical network is proposed in which a user can increase their key rate by trusting other users. This is because the keys, which would be discarded to remove correlations with untrusted users, can be retained when the users are trusted. It provides a new perspective for enhancing network performance.
View Article and Find Full Text PDFMeasurement device independent quantum key distribution (MDI QKD) has attracted growing attention for its immunity to attacks at the measurement unit, but its unique structure limits the secret key rate. Utilizing the wavelength division multiplexing (WDM) technique and reducing error rates are effective strategies for enhancing the secret key rate. Reducing error rates often requires active feedback control of wavelengths using precise external references.
View Article and Find Full Text PDFThe passive approach to quantum key distribution (QKD) consists of removing all active modulation from the users' devices, a highly desirable countermeasure to get rid of modulator side channels. Nevertheless, active modulation has not been completely removed in QKD systems so far, due to both theoretical and practical limitations. In this Letter, we present a fully passive time-bin encoding QKD system and report on the successful implementation of a modulator-free QKD link.
View Article and Find Full Text PDFThere is no doubt that measurement-device-independent quantum key distribution (MDI-QKD) is a crucial protocol that is immune to all possible detector side channel attacks. In the preparation phase, a simulation model is usually employed to get a set of optimized parameters, which is utilized for getting a higher secure key rate in reality. With the implementation of high-speed QKD, the afterpulse effect which is an intrinsic characteristic of the single-photon avalanche photodiode is no longer ignorable, this will lead to a great deviation compared with the existing analytical model.
View Article and Find Full Text PDFThe quantum-classical coexistence can be implemented based on wavelength division multiplexing (WDM), but due to Raman noise, the wavelength spacing between quantum and classical signals and launch power from classical channels are restricted. Space division multiplexing (SDM) can now be availably achieved by multicore fiber (MCF) to reduce Raman noise, thereby loosening the restriction for coexistence in the same band and obtaining a high communication capacity. In this paper, we realize the quantum-classical coexistence over a 7-core MCF.
View Article and Find Full Text PDFQuantum key distribution (QKD) provides an attractive solution for secure communication. However, channel disturbance severely limits its application when a QKD system is transferred from the laboratory to the field. Here a high-speed Faraday-Sagnac-Michelson QKD system is proposed that can automatically compensate for the channel polarization disturbance, which largely avoids the intermittency limitations of environment mutation.
View Article and Find Full Text PDF