Publications by authors named "Guan-Fei Gong"

As a photophysical phenomenon, aggregation-induced emission (AIE) was proposed by Tang in 2001. Due to their excellent fluorescence emission performance, AIEgens and AIE-based fluorescence materials have shown great application potential in a wide range of science fields. Hence, exploring new AIEgens and construction of novel AIE materials are especially vital.

View Article and Find Full Text PDF

Stimuli-responsive optical materials attract lots of attention due to their broad applications. Herein, a novel smart stimuli-responsive supramolecular polymer was successfully constructed using a simple tripodal quaternary ammonium-based gelator (TH). The TH self-assembles into a supramolecular polymer hydrogel (TH-G) and shows aggregation-induced emission (AIE) properties.

View Article and Find Full Text PDF

Recently, ultrasensitive stimuli-responsive materials have received extensive attention due to their high sensitivity and wide applications. Herein, we report a novel approach to design ultrasensitive responsive materials by rationally introducing the aggregation-induced emission (AIE) effect into supramolecular polymer gels. According to this approach, by rationally introducing self-assembly moieties and a fluorophore, the obtained gelator DNS can act as an AIEgen; it showed strong AIE after aggregating into the supramolecular polymer gel GDNS.

View Article and Find Full Text PDF

A novel bis-component AIE-gel TG was facilely constructed from two "easy-to-synthesize" tripodal gelators by a simple host-guest self-assembly process. Interestingly, the TG shows strong aggregation-induced emission (AIE) and could be used for highly efficient and sensitive detection and separation of ions (CN, Fe and HPO). The LODs (limits of lowest detection) of TG for CN, Fe and HPO are in the range of 4.

View Article and Find Full Text PDF

Recently, ultrasensitive detection and multi-guest sensing have received extensive attention due to their high sensitivity and efficiency. Herein, we report a novel approach to achieve ultrasensitive detection of multi-analyte. This approach is concluded as "rationally introduce Aggregation-Induced Emission (AIE) into chemosensor".

View Article and Find Full Text PDF

A novel approach for the ultrasensitive detection and separation of F- has been successfully developed. F- could induce a tripodal naphthalene imide sensor (TNA) to result in supramolecular polymerization, leading to strong AIEE. The TNA could act as an excellent recyclable material for F- detection and separation.

View Article and Find Full Text PDF