Sci Bull (Beijing)
September 2024
One-dimensional (1D) semiconductor nanostructures exhibit exceptional performance in mitigating short-channel effects and ensuring low power consumption. However, the scarcity of high-mobility p-type 1D materials impedes further advancement. Molecular-based materials offer high designability in structure and properties, making them a promising candidate for 1D p-type semiconductor materials.
View Article and Find Full Text PDFSolar interfacial water evaporation shows great potential to address the global freshwater scarcity. Water evaporation being inherently energy intensive, Joule-heating assisted solar evaporation for addressing insufficient vapor under natural conditions is an ideal strategy. However, the simultaneous optimization of low evaporation enthalpy, high photothermal conversion, and excellent Joule-heating steam generation within a single material remain a rare achievement.
View Article and Find Full Text PDFDirectional defects management in polycrystalline perovskite film with inorganic passivator is highly demanded while yet realized for fabricating efficient and stable perovskite solar cells (PSCs). Here, we develop a directional passivation strategy employing a two-dimensional (2D) material, Cu-(4-mercaptophenol) (Cu-HBT), as a passivator precursor. Cu-HBT combines the merits of the targeted modification from organic passivator and excellent stability offered by inorganic passivator.
View Article and Find Full Text PDFThe electronic conductivity (EC) of metal-organic frameworks (MOFs) is sensitive to strongly oxidizing guest molecules. Water is a relatively mild species, however, the effect of H O on the EC of MOFs is rarely reported. We explored the effect of H O on the EC in the MOFs (NH ) -MIL-125 and its derivatives with experimental and theoretical investigations.
View Article and Find Full Text PDFChemiresistive sensing has been regarded as the key monitoring technique, while classic oxide gas detection devices always need an external power supply. In contrast, the bulk photovoltage of photoferroelectric materials could provide a controllable power source, holding a bright future in self-powered gas sensing. Herein, we present a new photoferroelectric ([-pentylaminium][ethylammonium]PbI, ), which possesses large spontaneous polarization (∼4.
View Article and Find Full Text PDFDangling bond formation for COF materials in a rational manner is an enormous challenge, especially through post-treatment which is a facile strategy while has not been reported yet. In this work, a "chemical scissor" strategy is proposed for the first time to rationally design dangling bonds in COF materials. It is found that Zn coordination in post-metallization of TDCOF can act as an "inducer" which elongates the target bond and facilitates its fracture in hydrolyzation reactions to create dangling bonds.
View Article and Find Full Text PDFPore size plays a critical role in determining the performance of metal-organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore-size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent-coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL-88B.
View Article and Find Full Text PDFSurface modification is a promising method to change the surface properties of nanomaterials, but it is limited in enhancing their intrinsic redox nature. In this work, a "filter amplifier" strategy is proposed for the first time to reverse the intrinsic redox nature of materials. This is demonstrated by coating a COF-316 layer with controlled thickness on TiO to form core-sheath nanowire arrays.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2022
Accurate fire warning is very important for people's life and property safety. The most commonly used fire alarm is based on the detection of a single factor of gases, smoke particles, or temperature, which easily causes false alarm due to complex environmental conditions. A facile multi-factor route for fabricating an accurate analog fire alarm using a Pb S I nanowire mesh based on its photoelectric and gas-sensing dual function is presented.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2022
The modification of inorganic two-dimensional (2D) materials with organic functional motifs is in high demand for the optimization of their properties, but it is still a daunting challenge. Organic metal chalcogenides (OMCs) are a type of newly emerging 2D materials, with metal chalcogenide layers covalently anchored by long-range ordered organic functional motifs, these materials are extremely desirable but impossible to realize by traditional methods. Both the inorganic layer and organic functional motifs of OMCs are highly designable and thus provide this type of 2D materials with enormous variety in terms of their structure and properties.
View Article and Find Full Text PDFFerroelectric materials have become key components for versatile device applications, and their thin films are highly desirable for integrating the miniaturized devices. Despite substantial endeavors, it is still challenging to achieve effective chemiresistive sensing in the ferroelectric films. Here, for the first time, we have exploited ferroelectric thin films of 2D hybrid perovskite BAEAPbI (), to fabricate the high-performance chemiresistor gas sensors.
View Article and Find Full Text PDFPressure and temperature are two important indicators for human skin perception. Electronic skin (E-skin) that mimics human skin within one single flexible sensor is beneficial for detecting and differentiating pressure and temperature and showing immunity from tensile strain disruptions. However, few studies have simultaneously realized these conditions.
View Article and Find Full Text PDFHigh-quality MOF thin films with high orientation and controlled thickness are extremely desired for applications. However, they have been only successfully fabricated on flat substrates. Those MOF 2D thin films are limited by low exposed area and slow mass transport.
View Article and Find Full Text PDFOrganic-inorganic hybrid superlattices (OIHSLs) hold attractive physical and chemical properties, while the construction of single-crystal covalent OIHSLs has not been achieved. Herein a coordination assembly strategy was proposed to create a single-crystal covalent OIHSL PbBDT (BDT=1,4-benzenedithiolate), where layered [PbS ] sublattice covalently connects with benzene sublattice. The covalent bonding offers better thermo-/chemi-stability, inter-sublattice electron transport, and unique organic-group-functionalized surface, which may enable better performances in chemical applications than non-covalent OIHSL.
View Article and Find Full Text PDFThe urgent requirement of monitoring air pollution worldwide evokes intensive research interest in developing chemiresistive gas sensing techniques. To overcome the limits in sensitivity and selectivity of room temperature (RT) chemiresistive sensing materials, a new strategy using single-atom catalysts (SACs) via surface coordination is proposed. As a proof-of-concept, single Pd atoms on TiO (Pd-TiO) possess high efficiency in generating adsorbed O as well as high activity and selectivity in catalyzing CO oxidation at RT.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2021
Arranging ionic liquids (ILs) with long-range order can not only enhance their performance in a desired application, but can also help elucidate the vital between structure and properties. However, this is still a challenge and no example has been reported to date. Herein, we report a feasible strategy to achieve a crystalline IL via coordination self-assembly based reticular chemistry.
View Article and Find Full Text PDFOne-dimensional (1D) inorganic-organic metal halide hybrids at the molecular level, which can be considered as arrays of nanochains isolated by organic components, have shown remarkable optical and electric properties. This review summarizes their reported structural types and shows how to modify their band gaps and optical and electric properties.
View Article and Find Full Text PDFEngineering the band gap chemically by organic molecules is a powerful tool with which to optimize the properties of inorganic 2D materials. The obtained materials are however still limited by inhomogeneous compositions and properties at nanoscale and small adjustable band gap ranges. To overcome these problems in the traditional exfoliation and then organic modification strategy, an organic modification and then exfoliation strategy was explored in this work for preparing 2D organic metal chalcogenides (OMCs).
View Article and Find Full Text PDFA new series of 2D catalytic materials whose inorganic surfaces are fully covered with pre-designed "promoter" groups are reported. One of them showed excellent biomimetic catalytic activity and provided the lowest detection limit to glucose among the reported 2D materials and their composite materials.
View Article and Find Full Text PDFHeterostructured metal-organic framework (MOF)-on-MOF thin films have the potential to cascade the various properties of different MOF layers in a sequence to produce functions that cannot be achieved by single MOF layers. An integration method that relies on van der Waals interactions, and which overcomes the lattice-matching limits of reported methods, has been developed. The method deposits molecular sieving Cu-TCPP (TCPP=5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin) layers onto semiconductive Cu-HHTP (HHTP=2,3,6,7,10,11-hexahydrotriphenylene) layers to obtain highly oriented MOF-on-MOF thin films.
View Article and Find Full Text PDFIn response to ever-increasing application requirements in lighting and displays, a tremendous emphasis is being placed on single-component white-light emission. Single-component inorganic borates doped with rare earth metal ions have shown prominent achievements in white-light emission. The first environmentally friendly defect-induced white-light emitting crystalline inorganic borate, Ba [Sn(OH) ][B(OH) ] , has been prepared.
View Article and Find Full Text PDFSuperlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI semiconductor through a mild solution method yielded the first lead iodide superlattice, EtDAB⋅4PbI (EtDAB=tetraethylbenzidine), with radical and non-radical forms. The non-radical form has a non-ionic structure that differs from the common ionic structures for inorganic-organic hybrid lead halides.
View Article and Find Full Text PDFBroad absorption, long-lived photogenerated carriers, high conductance, and high stability are all required for a light absorber toward its real application on solar cells. Inorganic-organic hybrid lead-halide materials have shown tremendous potential for applications in solar cells. This work offers a new design strategy to improve the absorption range, conductance, photoconductance, and stability of these materials.
View Article and Find Full Text PDFElectrically bistable materials have important applications in memory, displays, switches, sensors, and quantum computation. This communication reports a metal-organic framework (MOF) material as a new type of electrically bistable material. Taking advantage of the flexible structure of MOF materials, the electrically bistable states of the MOF were reversibly modulated between its crystalline and amorphous phases.
View Article and Find Full Text PDF