Publications by authors named "Guan Woo Kim"

Defect passivation has become essential in improving efficiency and stability in perovskite solar cells. Here, we report the use of (α-methylguanido)acetic acid, also known as creatine, as a passivation molecule. It is employed both as an additive and as a surface passivation layer of perovskite thin films, given its multiple functional groups, which could address different defect sites, and its size, which could inherently affect the material structure.

View Article and Find Full Text PDF

We show that pristine thin films made of tin halide perovskite have external photoluminescence quantum yield comparable to that of lead halide perovskite, i.e., the material in use to prepare state-of-the-art perovskite solar cells.

View Article and Find Full Text PDF

Complementary water splitting electrocatalysts used simultaneously in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) can simplify water splitting systems. Herein, earth-abundant NiMoFe (NMF) and phosphorized NiMoFeP (NMFP) are synthesized as complementary overall water splitting (OWS) catalysts. First, NMF is tested as both the HER and OER promoter, which exhibits low overpotentials of 68 (HER) and 337 mV (OER).

View Article and Find Full Text PDF

Perovskite solar cells (PSCs) are one of the most promising emerging energy-conversion technologies because of their high power conversion efficiencies (PCEs) and potentially low fabrication cost. To improve PCE, it is necessary to develop PSCs with good interfacial engineering to reduce the trap states and carrier transport barriers present at the various interfaces of the PSCs' architecture. This work reports a facile method to improve the interface between the perovskite absorber layer and the hole transport layer (HTL) by adding a small amount of acetonitrile (ACN) in the Spiro-OMeTAD precursor solution.

View Article and Find Full Text PDF

In addition to having proper energy levels and high hole mobility (μ) without the use of dopants, hole-transporting materials (HTMs) used in n-i-p-type perovskite solar cells (PSCs) should be processed using green solvents to enable environmentally friendly device fabrication. Although many HTMs have been assessed, due to the limited solubility of HTMs in green solvents, no green-solvent-processable HTM has been reported to date. Here, we report on a green-solvent-processable HTM, an asymmetric D-A polymer (asy-PBTBDT) that exhibits superior solubility even in the green solvent, 2-methylanisole, which is a known food additive.

View Article and Find Full Text PDF

We demonstrate a simple and facile way to improve the efficiency and moisture stability of perovskite solar cells using commercially available hole transport materials, 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD) and poly(3-hexylthiophene) (P3HT). The hole transport layer (HTL) composed of mixed spiro-OMeTAD and P3HT exhibited favorable vertical phase separation. The hydrophobic P3HT was more distributed near the surface (the air atmosphere), whereas the hydrophilic spiro-OMeTAD was more distributed near the perovskite layer.

View Article and Find Full Text PDF

We investigate the stability of an active organometallic perovskite layer prepared from a two-step solution procedure, including spin coating of aqueous lead nitrate (Pb(NO)) as a Pb source and sequential dipping into a methylammonium iodide (CHNHI) solution. The conversion of CHNHPbI from a uniform Pb(NO) layer generates PbI-free and large-grain perovskite crystallites owing to an intermediate ion-exchange reaction step, resulting in improved humidity resistance and, thereby, improved long-term stability with 93% of the initial power conversion efficiency (PCE) after a period of 20 days. The conventional fast-converted PbI-dimethylformamide solution system leaves small amounts of intrinsic PbI residue on the resulting perovskite and MAPbI crystallites with uncontrollable sizes.

View Article and Find Full Text PDF

Congenital cysts of the gallbladder are extremely rare, hence only a few ciliated foregut cysts of gallbladder have been reported. We report a case of a 20-year-old woman presenting with mild right upper quadrant abdominal discomfort, with normal levels of serum bilirubin and liver function tests. Abdominal ultrasonography revealed a well-defined cystic mass measured about 2 cm attached to the neck of gallbladder, with internal echogenic debris suggesting a complicated cyst, such as a hemorrhagic cyst.

View Article and Find Full Text PDF

We designed and synthesized a novel conjugated polyelectrolyte (CPE), poly{3-[2-[4,8-bis(2-ethyl-hexyloxy)-6-methyl-1,5-dithia-s-indacen-2-yl]-9-(3-dimethylamino-propyl)-7-methyl-9H-fluoren-9-yl]-propyl}-dimethyl-amine (PBN). We employed PBN as an electron-transporting layer on a ZnO layer and constructed a highly efficient, inverted structure device consisting of a mixture of poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7) and PC70BM, achieving a high power conversion of up to 8.6%, constituting a 21.

View Article and Find Full Text PDF