Publications by authors named "Guan Sihai"

It is one of the strategies to study the complexity of spontaneous fluctuation of brain neurons based on resting-state functional magnetic resonance imaging (rs-fMRI), but the multifractal characteristics of spontaneous fluctuation of brain neurons in psychiatric diseases need to be studied. Therefore, this paper will study the multifractal spontaneous brain activity changes in psychiatric disorders using the multifractal detrended fluctuation analysis algorithm based on the UCLA datasets. Specifically: (1) multifractal characteristics in adult attention deficit-hyperactivity disorder (ADHD), bipolar disorder (BP), and schizophrenia (SCHZ); (2) the source of those multifractal characteristics.

View Article and Find Full Text PDF

Accurate diagnosis of cerebral ischemia severity is crucial for clinical decision making. Laser speckle contrast imaging-based cerebral blood flow imaging can help assess the severity of cerebral ischemia by monitoring changes in blood flow. In this study, we simulated hyperacute ischemia in rats, isolating arterial and venous flow-related signals from cortical vasculature.

View Article and Find Full Text PDF

Long-range dependence is a prevalent phenomenon in various biological systems that characterizes the long-memory effect of temporal fluctuations. While recent research suggests that functional magnetic resonance imaging signal has fractal property, it remains unknown about the multifractal long-range dependence pattern of resting-state functional magnetic resonance imaging signals. The current study adopted the multifractal detrended fluctuation analysis on highly sampled resting-state functional magnetic resonance imaging scans to investigate long-range dependence profile associated with the whole-brain voxels as specific functional networks.

View Article and Find Full Text PDF

Measuring differences between an individual's age and biological age with biological information from the brain have the potential to provide biomarkers of clinically relevant neurological syndromes that arise later in human life. To explore the effect of multimodal brain magnetic resonance imaging (MRI) features on the prediction of brain age, we investigated how multimodal brain imaging data improved age prediction from more imaging features of structural or functional MRI data by using partial least squares regression (PLSR) and longevity data sets (age 6-85 years). First, we found that the age-predicted values for each of these ten features ranged from high to low: cortical thickness (R = 0.

View Article and Find Full Text PDF

Adult attention deficit/hyperactivity disorder (ADHD), schizophrenia (SCHZ), and bipolar disorder (BP) have common symptoms and differences, and the underlying neural mechanisms are still unclear. This article will thoroughly discuss the differences between ADHD, BP, and SCHZ (31 healthy control and 31 ADHD; 34 healthy control and 34 BP; 42 healthy control and 42 SCHZ) relative to healthy subjects in combination with three atlases (et al., the Brainnetome atlas, the Dosenbach atlas, the Power atlas) and seven entropies (et al.

View Article and Find Full Text PDF

Although resting-state fMRI studies support that human brain is topographically organized regarding localized and distributed processes, it is still unclear about the task-modulated cortical hierarchy in terms of distributed functional connectivity and localized timescales. To address, current study investigated the effect of cognitive load on cortical connectivity gradients and local timescales in the healthy brain using resting state fMRI as well as 1- and 2-back working memory task fMRI. The results demonstrated that (1) increased cognitive load was associated with lower principal gradient in transmodal cortices, higher principal gradient in primary cortices, decreased decay rate and reduced timescale variability; (2) global properties including gradient variability, timescale decay rate, timescale variability and network topology were all modulated by cognitive load, with timescale variability related to behavioral performance; and (3) at 2-back state, the timescale variability was indirectly and negatively linked with global network integration, which was mediated by gradient variability.

View Article and Find Full Text PDF

Recently, adaptive filtering algorithms were designed using hyperbolic functions, such as hyperbolic cosine and tangent function. However, most of those algorithms have few parameters that need to be set, and the adaptive estimation accuracy and convergence performance can be improved further. More importantly, the hyperbolic sine function has not been discussed.

View Article and Find Full Text PDF

To better perform distributed estimation, this paper, by combining the Fair cost function and adapt-then-combine scheme at all distributed network nodes, a novel diffusion adaptive estimation algorithm is proposed from an M-estimator perspective, which is called the diffusion Fair (DFair) adaptive filtering algorithm. The stability of the mean estimation error and the computational complexity of the DFair are theoretically analyzed. Compared with the robust diffusion LMS (RDLMS), diffusion Normalized Least Mean M-estimate (DNLMM), diffusion generalized correntropy logarithmic difference (DGCLD), and diffusion probabilistic least mean square (DPLMS) algorithms, the simulation experiment results show that the DFair algorithm is more robust to input signals and impulsive interference.

View Article and Find Full Text PDF

The linearity and stationarity of fMRI time series need to be understood due to their important roles in the choice of approach for brain network analysis. In this paper, we investigated the stationarity and linearity of resting-state fMRI (rs-fMRI) time-series data from the Midnight Scan Club datasets. The degree of stationarity (DS) and the degree of non-linearity (DN) were, respectively, estimated for the time series of all gray matter voxels.

View Article and Find Full Text PDF