Quantitative polymerase chain reaction (qPCR) is a well-recognized technique for amplifying and quantifying nuclear acid, and its real-time monitoring capability, ultrahigh sensitivity, and accuracy make it a "golden-standard" tool in both molecular biology research and clinical diagnostics. However, current qPCR tests rely on bulky instrumentation and skilled laboratorians in centralized laboratories, which spatially and temporally separate the sample collection and test, leading to longer sample turnaround times (TATs) and limited working conditions. Herein, we propose an integrated optical fiber real-time polymerase chain reaction (iF-PCR) system that successfully allows convenient sample collection, rapid thermocycling, closed-loop thermal annealing, and real-time fluorescence detection in a tiny capillary reactor.
View Article and Find Full Text PDFBackground: The emergence of telesurgery has received global interest, with secure network transmission identified as a crucial determinant of its success. This study aimed to evaluate the safety and viability of employing quantum cryptography communication in remote partial nephrectomy.
Methods: The surgeon operated on the patient from a distance of over 260 km using remote control of a surgical robot.
Ferroptosis is a novel type of programmed cell death dependent on iron and is characterized by the accumulation of lipid peroxides, which is involved in acute lung injury (ALI). Brazilin, an organic compound known for its potent antioxidant and anti-inflammatory properties, has not been thoroughly studied for its potential impact on lipopolysaccharide (LPS)-induced ALI. Here, we found that pretreatment of brazilin mitigated LPS-induced lung injury and inflammation by inhibiting mitochondrial oxidative stress and ferroptosis, both in vivo and in vitro.
View Article and Find Full Text PDFDespite the great success in deploying metal-organic frameworks (MOFs) as efficient electrocatalysts, the low adoption of operando methods hinders the understanding of underlying mechanism. By leveraging the subtle refractive index evolution, including both the real and the imaginary parts, an entirely new concept of a lab-on-fiber operando method and its feasibility for "pristine-immersion-operando-post analysis" of electrocatalyts are demonstrated. Concurrent collection of absorption spectra and surface plasmon resonance is achieved by engineering fiber-optic waveguides to simultaneously induce guided light attenuation and plasmonic coupling.
View Article and Find Full Text PDFSynthesizing high-crystalline covalent organic framework films is highly desired to advance their applications in two-dimensional optoelectronics, but it remains a great challenge. Here, we report a diffusion-limited synthesis strategy for wafer-scale uniform covalent organic framework films, in which pre-deposited 4,4',4″,4‴-(1,3,6,8-Tetrakis(4-aminophenyl) pyrene is encapsulated on substrate surface with a layer of covalent organic framework prepolymer. The polymer not only prevents the dissolution of precursor, but limits the reaction with terephthalaldehyde dissolved in solution, thereby regulating the polymerization process.
View Article and Find Full Text PDFGlial fibrillary acidic protein (GFAP) is a specific blood biomarker for various neurological diseases, including traumatic brain injury (TBI). In this study, we present a cost-effective, portable, and label-free biosensing method for the sensitive and rapid detection of GFAP in body fluids. As the sensitivity of current optical fiber sensors is insufficient to detect the ultralow concentration of GFAP in early body fluids, interfaces of gold nanoparticles with various morphologies were employed to improve the sensitivity of sensor.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Effective treatment of malignant tumors remains a thorny issue in current medicine. As a new type of anticancer strategy, photothermal therapy (PTT) has attracted tremendous attention due to its favorable therapeutic effectiveness, high spatial-temporal controllability, and low occurrence of side effects. However, the efficacy of PTT is significantly reduced due to the limited penetration of light and heat-induced overexpression of heat shock protein (Hsp).
View Article and Find Full Text PDFCoupling with the nitrate electroreduction reaction (NitRR), the electrosynthesis of cyclohexanone oxime (CHO, the vital feedstock in the nylon-6 industry) from cyclohexanone provides a promising alternative to the traditional energy consumption process. However, it still suffers from low efficiency because selective production of *NHOH intermediate from NitRR under large current densities is challenging. We here report a CuMoO/nitrogen-doped carbon (NC) electrocatalyst with high-density Cu-Mo dual sites for NitRR to selectively produce and stabilize *NHOH, with the subsequent cyclohexanone oximation achieving the highest CHO Faradaic efficiency of 94.
View Article and Find Full Text PDFLight Sci Appl
September 2024
Chemotherapy is one of the conventional treatments for cancer in clinical practice. However, poor delivery efficiency, systemic toxicity, and the lack of pharmacokinetic monitoring during treatment are the critical limitations of current chemotherapy. Herein, we reported a brand-new antitumor drug delivery strategy that harnesses an optical fiber endoscopically therapeutic probe.
View Article and Find Full Text PDFThe diatom , known for its high triacylglycerol (TAG) content and significant levels of n-3 long chain polyunsaturated fatty acids (LC-PUFAs), such as eicosapentaenoic acid (EPA), has a limited ability to utilize exogenous organic matter. This study investigates the enhancement of acetate utilization in by introducing an exogenous acetate transport protein. The acetate transporter gene from endowed the organism with the capability to assimilate acetate and accelerating its growth.
View Article and Find Full Text PDFBackground: Prostate cancer remains a prominent challenge in oncology, with advanced stages showing poor prognosis. The tumor microenvironment (TME), and particularly tumor-associated macrophages (TAMs), plays a crucial role in disease progression. This study explores the single-cell transcriptomics of prostate cancer, determines macrophage heterogeneity, identifies prognostic gene markers, and assesses the role of PPIF in TAMs.
View Article and Find Full Text PDFIn this paper, cascaded modal interferometers constructed by strongly-coupled seven-core fiber (SC-SCF) with different lengths are demonstrated for enhanced bending sensing based on Vernier effect. The free spectral range (FSR) of a single SC-SCF interferometer is determined by the length of SC-SCF. Two SC-SCF interferometers with different FSRs are cascaded, in which, one functions as the sensor while the other functions as the reference.
View Article and Find Full Text PDFNanomaterials (Basel)
May 2024
Glass ceramics (GCs) containing PbS quantum dots (QDs) are prepared for temperature sensing. Broadband emissions are detected in the GCs when PbS QDs are precipitated from the glasses, and emissions centers are modulated from 1250 nm to 1960 nm via heat treatments. The emission centers of GCs exhibit blue-shifts when environment temperatures increase from room temperature to 210 °C.
View Article and Find Full Text PDFDynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive.
View Article and Find Full Text PDFOperando decoding of the key parameters of photo-electric catalysis provides reliable information for catalytic effect evaluation and catalytic mechanism exploration. However, to capture the details of surface-localized and rapid chemical and thermal events at the nanoscale in real-time is highly challenging. A promising approach based on a lab-around-microfiber sensor capable of simulating photo-electric catalytic reactions on the surface of optical fibers as well as monitoring reactant concentration changes and catalytic heat generation processes is demonstrated.
View Article and Find Full Text PDFThe composition and stability of soil aggregates are important indicators for measuring soil quality, which would be affected by land use changes. Taking wetlands with different returning years (2 and 15 years) in the Yellow River Delta as the research object, paddy fields and natural wetlands as control, we analyzed the changes in soil physicochemical properties and soil aggregate composition. The results showed that soil water content, total organic carbon, dissolved organic carbon and total phosphorus of the returning soil (0-40 cm) showed an overall increasing trend with returning period, while soil pH and bulk density was in adverse.
View Article and Find Full Text PDFBackground: Recent studies have shown that obesity may contribute to the pathogenesis of benign prostatic hyperplasia (BPH). However, the mechanism of this pathogenesis is not fully understood.
Methods: A prospective case-control study was conducted with 30 obese and 30 nonobese patients with BPH.
Hydrovoltaic is an emerging technology that aims to harvest energy from water flow and evaporation, in which the plasmonic hydrogen ions are generated by the interaction between water and hydrovoltaic device. However, the volume of the water sample for the interaction is usually ultra-small due to the compact size of hydrovoltaic device, making the quantification and characterization of the hydrogen ions in such water sample an elusive goal. To address this issue, a miniature fiber-optic pH probe is proposed using a unilaterally tapered-microfiber Bragg grating.
View Article and Find Full Text PDFClear cell renal cell carcinoma (ccRCC) represents a significant challenge in oncology, primarily due to its resistance to conventional therapies. Understanding the tumour microenvironment (TME) is crucial for developing new treatment strategies. This study focuses on the role of amyloid precursor protein (APP) in tumour-associated macrophages (TAMs) within the ccRCC TME, exploring its potential as a prognostic biomarker.
View Article and Find Full Text PDFPhosphorus (P) forms in soil are related to the P cycle and play an important role in maintaining the productivity and function of wetlands. Tidal hydrology is a key factor controlling soil P forms in estuary wetlands; however, the response of soil P forms to tidal hydrological changes remains unclear. A translocation experiment in the Yellow River Estuary wetland was conducted to study the effect of hydrological changes on P forms in the soil, in which freshwater marsh soils in the supratidal zone were translocated to salt marshes in different intertidal zones (up-high-tidal zone, high-tidal zone, and middle-tidal zone).
View Article and Find Full Text PDFIonizing radiation (IR)-induced hematopoietic injury has become a global concern in the past decade. The underlying cause of this condition is a compromised hematopoietic reserve, and this kind of hematopoietic injury could result in infection or bleeding, in addition to lethal mishaps. Therefore, developing an effective treatment for this condition is imperative.
View Article and Find Full Text PDFInvasive fungal infections pose a significant public health threat. The lack of precise and timely diagnosis is a primary factor contributing to the significant increase in patient mortality rates. Here, an interface-modulated biosensor utilizing an optical fiber for quantitative analysis of fungal biomarkers at the early stage of point-of-care testing (POCT), is reported.
View Article and Find Full Text PDF