Massive gene expression analyses are widely used to find differentially expressed genes under specific conditions. The results of these experiments are often available in public databases that are undergoing a growth similar to that of molecular sequence databases in the past. This now allows novel secondary computational tools to emerge that use such information to gain new knowledge.
View Article and Find Full Text PDFbioRxiv
August 2020
Unlabelled: The current genomics era is bringing an unprecedented growth in the amount of gene expression data, only comparable to the exponential growth of sequences in databases during the last decades. This data now allows the design of secondary analyses that take advantage of this information to create new knowledge through specific computational approaches. One of these feasible analyses is the evaluation of the expression level for a gene through a series of different conditions or cell types.
View Article and Find Full Text PDFThe current genomics era is bringing an unprecedented growth in the amount of gene expression data, only comparable to the exponential growth of sequences in databases during the last decades. This data allow the design of secondary analyses that take advantage of this information to create new knowledge. One of these feasible analyses is the evaluation of the expression level for a gene through a series of different conditions or cell types.
View Article and Find Full Text PDFMissing observations are common in time series data and several methods are available to impute these values prior to analysis. Variation in statistical characteristics of univariate time series can have a profound effect on characteristics of missing observations and, therefore, the accuracy of different imputation methods. The package can be used to compare the prediction accuracy of different methods as related to the amount and type of missing data for a user-supplied dataset.
View Article and Find Full Text PDFJ Integr Bioinform
September 2011
The prediction of protein structures is a current issue of great significance in structural bioinformatics. More specifically, the prediction of the tertiary structure of a protein consists in determining its three-dimensional conformation based solely on its amino acid sequence. This study proposes a method in which protein fragments are assembled according to their physicochemical similarities, using information extracted from known protein structures.
View Article and Find Full Text PDF