Annu Int Conf IEEE Eng Med Biol Soc
July 2012
This paper presents the analysis of the autonomic nervous system (ANS) control and cardiac baroreflex sensitivity in patients undergoing general anesthesia for major surgery, with the goal of evaluating the effects of anesthesia bolus induction with propofol on autonomic control of heart rate (HR) and arterial blood pressure (ABP). The increase in baroreflex gain in the LF band observed through two different methods hints at the fact that the baroreflex may increase heart period (HP) following a transient ABP decrease, but its response displays a larger amplitude, to compensate for the blunting of the sympathetic action on heart rate and vascular resistance.
View Article and Find Full Text PDFThe superposition of multiple plane waves with appropriate propagation vectors generates a periodic or quasi-periodic non-diffractive optical field. We show that the Fourier spectrum of the phase modulation of this field is formed by two disjoint parts, one of which is proportional to the Fourier spectrum of the field itself. Based on this result we prove that the non-diffractive field can be generated, with remarkable high accuracy and efficiency, in a Fourier domain spatial filtering setup, using a synthetic phase hologram whose transmittance is the phase modulation of the field.
View Article and Find Full Text PDFWe report a highly efficient method for generation of any high-order nondiffracting Bessel beam employing a phase hologram whose transmittance coincides with the phase modulation of such a beam. It is remarkable that the Bessel beam generated by this hologram, at the plane of this device, has peak amplitude higher than the amplitude of the beam employed to illuminate it.
View Article and Find Full Text PDFWe show that computer generated holograms, implemented with amplitude-only liquid crystal spatial light modulators, allow the synthesis of fully complex fields with high accuracy. Our main discussion considers modified amplitude holograms whose transmittance is obtained by adding an appropriate bias function to the real cosine computer hologram of the encoded signal. We first propose a bias function, given by a soft envelope of the signal modulus, which is appropriate for perfect amplitude modulators.
View Article and Find Full Text PDF