Publications by authors named "Guadalupe L Rodriguez-Gonzalez"

Maternal obesity predisposes offspring (F1) to cardiovascular disease. To evaluate basal heart function and ischemia-reperfusion (IR) responses in F1 males and females of obese mothers, female Wistar rats (F0) were fed chow or an obesogenic (MO) diet from weaning through pregnancy and lactation. Non-sibling F1 males and females were weaned to chow at postnatal day (PND) 21 and euthanized at PND 550.

View Article and Find Full Text PDF

We investigated whether maternal obesity affects the hepatic mitochondrial electron transport chain (ETC), sirtuins, and antioxidant enzymes in young (110 postnatal days (PND)) and old (650PND) male and female offspring in a sex- and age-related manner. Female Wistar rats ate a control (C) or high-fat (MO) diet from weaning, through pregnancy and lactation. After weaning, the offspring ate the C diet and were euthanized at 110 and 650PND.

View Article and Find Full Text PDF

Previously, we demonstrated in pigs that renal denervation halves glucose release during hypoglycaemia and that a prenatal dexamethasone injection caused increased ACTH and cortisol concentrations as markers of a heightened hypothalamic pituitary adrenal axis (HPAA) during hypoglycaemia. In this study, we investigated the influence of an altered HPAA on renal glucose release during hypoglycaemia. Pigs whose mothers had received two late-gestational dexamethasone injections were subjected to a 75 min hyperinsulinaemic-hypoglycaemic clamp (<3 mmol/L) after unilateral surgical denervation.

View Article and Find Full Text PDF

We investigated whether excessive retroperitoneal adipose tissue (AT) expansion programmed by maternal obesity (MO) affects adipocyte size distribution and gene expression in relation to adipocyte proliferation and differentiation in male and female offspring (F1) from control (F1C) and obese (F1MO) mothers. Female Wistar rats (F0) ate a control or high-fat diet from weaning through pregnancy and lactation. F1 were weaned onto a control diet and euthanized at 110 postnatal days.

View Article and Find Full Text PDF

The steroids corticosterone and dehydroepiandrosterone (DHEA) perform multiple life course functions. Rodent life-course circulating corticosterone and DHEA trajectories are unknown. We studied life course basal corticosterone and DHEA in offspring of rats fed protein-restricted (10% protein, R) or control (20% protein, C), pregnancy diet first letter, and/or lactation second letter, producing four offspring groups-CC, RR, CR, and RC.

View Article and Find Full Text PDF

Obese mothers' offspring develop obesity and metabolic alterations in adulthood. Poor postnatal dietary patterns also contribute to obesity and its comorbidities. We aimed to determine whether in obese mothers' offspring an adverse postnatal environment, such as high-fat diet (HFD) consumption (second hit) exacerbates body fat accumulation, metabolic alterations and adipocyte size distribution.

View Article and Find Full Text PDF

Maternal obesity (MO) causes maternal and fetal oxidative stress (OS) and metabolic dysfunction. We investigated whether supplementing obese mothers with resveratrol improves maternal metabolic alterations and reduces OS in the placenta and maternal and fetal liver. From weaning through pregnancy female Wistar rats ate chow (C) or a high-fat diet (MO).

View Article and Find Full Text PDF

Maternal obesity (MO) induces negative consequences in the offspring development. Adiposity phenotype is associated with maternal diet at early pregnancy and DNA methylation marks in the RXRα promotor at birth. Glucocorticoids play an important role in the regulation of metabolism through the activation of nuclear hormone receptors such as the RXRα protein.

View Article and Find Full Text PDF

We investigated if supplementing obese mothers (MO) with docosahexaenoic acid (DHA) improves milk long-chain polyunsaturated fatty acid (LCPUFA) composition and offspring anxiety behavior. From weaning throughout pregnancy and lactation, female Wistar rats ate chow (C) or a high-fat diet (MO). One month before mating and through lactation, half the mothers received 400 mg DHA kg d orally (C+DHA or MO+DHA).

View Article and Find Full Text PDF

Developmental programming predisposes offspring to metabolic, behavioural and reproductive dysfunction in adult life. Evidence is accumulating that ageing phenotype and longevity are in part developmentally programmed in each individual. Unfortunately, there are few studies addressing the effects of developmental programming by maternal nutrition on the rate of ageing of the male reproductive system.

View Article and Find Full Text PDF

Animal studies indicate that suboptimal conditions during pregnancy adversely impact both maternal health and offspring phenotype, predisposing offspring to development of later-life diseases including obesity, diabetes, cardiovascular diseases, and behavioral and reproductive dysfunction. Effective interventions during pregnancy and/or lactation are needed to improve both maternal and offspring health. This review addresses the relationship between adverse perinatal insults and its negative impact on offspring development and presents some maternal intervention studies in animal models, such as maternal nutrition (diet modification, antioxidants, omega-3-6 (n-3-6), probiotics) or physical activity, which can prevent or alleviate negative outcomes in both mother and offspring.

View Article and Find Full Text PDF

Lactation is a critical period during which maternal nutritional and environmental challenges affect milk composition and, therefore, organ differentiation, structure, and function in offspring during the early postnatal period. Evidence to date shows that lactation is a vulnerable time during which transient insults can have lasting effects, resulting in altered health outcomes in offspring in adult life. Despite the importance of the developmental programming that occurs during this plastic period of neonatal life, there are few comprehensive reviews of the multiple challenges-especially to the dam-during lactation.

View Article and Find Full Text PDF

Programming of offspring life-course health by maternal nutrition and stress are well studied. At postnatal day 850, we evaluated male and female steroid levels and metabolism in aged offspring of primigravid sister rats bred at 70, 90, 150, or 300 days' life. At 850 days life, male offspring corticosterone was similar regardless of maternal age.

View Article and Find Full Text PDF

Key Points: Maternal obesity predisposes to metabolic dysfunction in male and female offspring Maternal high-fat diet consumption prior to and throughout pregnancy and lactation accelerates offspring metabolic ageing in a sex-dependent manner This study provides evidence for programming-ageing interactions ABSTRACT: Human epidemiological studies show that maternal obesity (MO) shortens offspring life and health span. Life course cellular mechanisms involved in this developmental programming-ageing interaction are poorly understood. In a well-established rat MO model, female Wistar rats ate chow (controls (C)) or high energy, obesogenic diet to induce MO from weaning through pregnancy and lactation.

View Article and Find Full Text PDF

High-fat diet (HFD) consumption induces obesity and increases blood glucose, insulin resistance, and metabolic disorders. Recent studies suggest that probiotics might be a novel approach to counteract these effects in the treatment of obesity. Here, we evaluated the effect of Leuconostoc mesenteroides subsp.

View Article and Find Full Text PDF

Key Points: Maternal high-fat diet consumption predisposes to metabolic dysfunction in male and female offspring at young adulthood. Maternal obesity programs non-alcoholic fatty liver disease (NAFLD) in a sex-dependent manner. We demonstrate sex-dependent liver transcriptome profiles in rat offspring of obese mothers.

View Article and Find Full Text PDF

Human and animal studies indicate that obesity during pregnancy adversely impacts both maternal health and offspring phenotype predisposing them to chronic diseases later in life including obesity, dyslipidemia, type 2 diabetes mellitus, and hypertension. Effective interventions during human pregnancy and/or lactation are needed to improve both maternal and offspring health. This review addresses the relationship between adverse perinatal insults and its negative impact on offspring development and presents some maternal intervention studies such as diet modification, probiotic consumption, or maternal exercise, to prevent or alleviate the negative outcomes in both the mother and her child.

View Article and Find Full Text PDF

Background: Prenatal glucocorticoid administration alters the activity of the fetal hypothalamic-pituitary-adrenocortical axis (HPAA), and correspondingly the adenocorticotropic hormone (ACTH) and cortisol levels after birth. The dosages required for these effects are critically discussed. Activation of the HPAA is related to metabolic syndrome and diabetes mellitus.

View Article and Find Full Text PDF

This study evaluated if there is a sexual dimorphism in the acute kidney injury (AKI) to chronic kidney disease (CKD) transition and the time-course of the potential mechanisms involved in the dimorphic response. Female and male rats were divided into sham-operated or underwent 45-min renal ischemia (F + IR, and M + IR). All groups were studied at 24-h and 1, 2, 3, or 4-months post-ischemia.

View Article and Find Full Text PDF

A high-fat diet during intrauterine development predisposes offspring (F) to phenotypic alterations, such as lipid synthesis imbalance and increased oxidative stress, causing changes in male fertility. The objective of this study was to evaluate the effects of maternal obesity during pregnancy and lactation on antioxidant enzymes in the F testes. Female Wistar rats (F) were fed either a control (C, 5% fat) or an obesogenic (MO, maternal obesity, 25% fat) diet from weaning and throughout subsequent pregnancy and lactation.

View Article and Find Full Text PDF

A maternal low-protein (LP) diet programs fetal pancreatic islet β-cell development and function and predisposes offspring to metabolic dysfunction later in life. We hypothesized that maternal protein restriction during pregnancy differentially alters β- and α-cell populations in offspring by modifying islet ontogeny and function throughout life. We aimed to investigate the effect of an LP maternal diet on pancreatic islet morphology and cellular composition in female offspring on postnatal days (PNDs) 7, 14, 21, 36, and 110.

View Article and Find Full Text PDF
Article Synopsis
  • The rise of obesity in women of reproductive age is a growing concern globally, affecting both developed and developing nations.
  • Maternal obesity negatively influences the health of both mothers and their children, increasing the risk for chronic diseases like obesity and type 2 diabetes later in life.
  • The review discusses various interventions aimed at reducing the harmful effects of maternal obesity on offspring development, emphasizing the need for effective strategies during pregnancy to improve metabolic health for both mothers and their children.
View Article and Find Full Text PDF

Protein restriction in pregnancy produces maternal and offspring metabolic dysfunction potentially as a result of oxidative stress. Data are lacking on the effects of inhibition of oxidative stress. We hypothesized that maternal resveratrol administration decreases oxidative stress, preventing, at least partially, maternal low protein-induced maternal and offspring metabolic dysfunction.

View Article and Find Full Text PDF

Exercise improves health but few data are available regarding benefits of exercise in offspring exposed to developmental programming. There is currently a worldwide epidemic of obesity. Obesity in pregnant women predisposes offspring to obesity.

View Article and Find Full Text PDF