Publications by authors named "Guadagnini A"

The study aims at assessing the potential of graphene-based adsorbents to reduce environmental impacts of Iodinated Contrast Media Agents (ICMs). We analyze an extensive collection of ICMs. A modeling approach resting on molecular docking and Density Functional Theory simulations is employed to examine the adsorption process at the molecular level.

View Article and Find Full Text PDF

We focus on the quantification of the probability of failure (PF) of an infiltration structure, of the kind that is typically employed for the implementation of low impact development strategies in urban settings. Our approach embeds various sources of uncertainty. These include (a) the mathematical models rendering key hydrological traits of the system and the ensuing model parametrization as well as (b) design variables related to the drainage structure.

View Article and Find Full Text PDF

An innovative and versatile set-up for in situ and real time measures in an electrochemical cell is described. An original coupling between micro-Raman spectroscopy and atomic force microscopy enables one to collect data on opaque electrodes. This system allows for the correlation of topographic images with chemical maps during the charge exchange occurring in oxidation/reduction processes.

View Article and Find Full Text PDF

Decades of antibiotic use and misuse have generated selective pressure toward the rise of antibiotic-resistant bacteria, which now contaminate our environment and pose a major threat to humanity. According to the evolutionary "Red queen theory", developing new antimicrobial technologies is both urgent and mandatory. While new antibiotics and antibacterial technologies have been developed, most fail to penetrate the biofilm that protects bacteria against external antimicrobial attacks.

View Article and Find Full Text PDF

We present a conceptual and mathematical framework leading to the development of a biodegradation model capable to interpret the observed reversibility of the Pharmaceutical Sodium Diclofenac along its biological degradation pathway in groundwater. Diclofenac occurrence in water bodies poses major concerns due to its persistent (and bioactive) nature and its detection in surface waters and aquifer systems. Despite some evidences of its biodegradability at given reducing conditions, Diclofenac attenuation is often interpreted with models which are too streamlined, thus potentially hampering appropriate quantification of its fate.

View Article and Find Full Text PDF

Bimetallic nanoparticles allow new and synergistic properties compared to the monometallic equivalents, often leading to unexpected results. Here we present on silver-iron nanoparticles coated with polyethylene glycol, which exhibit a high transverse relaxivity (316 ± 13 mMs, > 3 times that of the most common clinical benchmark based on iron oxide), excellent colloidal stability and biocompatibility in vivo. Ag-Fe nanoparticles are obtained through a one-step, low-cost laser-assisted synthesis, which makes surface functionalization with the desired biomolecules very easy.

View Article and Find Full Text PDF

Nonequilibrium nanoalloys are metastable solids obtained at the nanoscale under nonequilibrium conditions that allow the study of kinetically frozen atoms and the discovery of new physical and chemical properties. However, the stabilization of metastable phases in the nanometric size regime is challenging and the synthetic route should be easy and sustainable, for the nonequilibrium nanoalloys to be practically available. Here we report on the one-step laser ablation synthesis in solution (LASiS) of nonequilibrium Au-Co alloy nanoparticles (NPs) and their characterization on ensembles and at the single nanoparticle level.

View Article and Find Full Text PDF

The combination of multiple functions in a single nanoparticle (NP) represents a key advantage of nanomedicine compared to traditional medical approaches. This is well represented by radiotherapy in which the dose of ionizing radiation should be calibrated on sensitizers biodistribution. Ideally, this is possible when the drug acts both as radiation enhancer and imaging contrast agent.

View Article and Find Full Text PDF

Appealing physical and chemical properties are foreseen in nanoparticles containing immiscible elements, despite their synthesis is challenging due to the unfavorable thermodynamics. Here we show that silver nanoparticles doped with Co can be achieved by a facile one-step route relying on laser ablation in liquid. Structural analysis suggests that the bimetallic nanoparticles consist of a matrix of face-centred cubic Ag rich of cobalt as point defects or dislocations, in a structure that is stable over time even in aqueous solution.

View Article and Find Full Text PDF

The study introduces a comprehensive framework for natural springs' protection and probabilistic risk assessment in the presence of uncertainty associated with the characterization of the groundwater system. The methodology is applied to a regional-scale hydrogeological setting, located in Northern Italy and characterized by the presence of high-quality natural springs forming a unique system whose preservation is of critical importance for the region. Diverse risk pathways are presented to constitute a fault tree model enabling identification of all basic events, each associated with uncertainty and contributing to an undesired system failure.

View Article and Find Full Text PDF

We propose and exemplify a framework to assess Natural Background Levels (NBLs) of target chemical species in large-scale groundwater bodies based on the context of Object Oriented Spatial Statistics. The approach enables one to fully exploit the richness of the information content embedded in the probability density function (PDF) of the variables of interest, as estimated from historical records of chemical observations. As such, the population of the entire distribution functions of NBL concentrations monitored across a network of monitoring boreholes across a given aquifer is considered as the object of the spatial analysis.

View Article and Find Full Text PDF

Several examples of nanosized therapeutic and imaging agents have been proposed to date, yet for most of them there is a low chance of clinical translation due to long-term retention and toxicity risks. The realization of nanoagents that can be removed from the body after use remains thus a great challenge. Here, we demonstrate that nonequilibrium gold-iron alloys behave as shape-morphing nanocrystals with the properties of self-degradable multifunctional nanomedicines.

View Article and Find Full Text PDF

We study and document the influence of wetting and nonwetting trapped immiscible fluid on the probability distribution of pore-scale velocities of the flowing fluid phase. We focus on drainage and imbibition processes within a three-dimensional microcomputed tomographic image of a real rock sample. The probability distribution of velocity magnitude displays a heavier tail for trapped nonwetting than wetting fluid.

View Article and Find Full Text PDF

Nanoparticles find applications in multiple technological and scientific fields, and laser ablation in liquid (LAL) emerged as a versatile method for providing colloidal solutions of nanomaterials with various composition, by a low cost, simple, self-standing, and "green" procedure. However, the use of high energy and high power laser beams is harmful, especially when coupled with flammable or toxic liquids, and in situ operation is required for starting, monitoring the LAL synthesis, and stopping it at the desired point. Here we describe the hardware and software design and the test results of a system for the production of nanoparticles by laser ablation synthesis in liquid solution (LASiS), which is remotely controllable with a personal computer or a smartphone.

View Article and Find Full Text PDF

Quantification of the (spatially distributed) natural contributions to the chemical signature of groundwater resources is an emerging issue in the context of competitive groundwater uses as well as water regulation and management frameworks. Here, we illustrate a geostatistically-based approach for the characterization of spatially variable Natural Background Levels (NBLs) of target chemical species in large-scale groundwater bodies yielding evaluations of local probabilities of exceedance of a given threshold concentration. The approach is exemplified by considering three selected groundwater bodies and focusing on the evaluation of NBLs of ammonium and arsenic, as detected from extensive time series of concentrations collected at monitoring boreholes.

View Article and Find Full Text PDF

Our study is keyed to the analysis of the interplay between engineering factors (i.e., transient pumping rates versus less realistic but commonly analyzed uniform extraction rates) and the heterogeneous structure of the aquifer (as expressed by the probability distribution characterizing transmissivity) on contaminant transport.

View Article and Find Full Text PDF

We assess the impact of an anisotropic space and time grid adaptation technique on our ability to solve numerically solute transport in heterogeneous porous media. Heterogeneity is characterized in terms of the spatial distribution of hydraulic conductivity, whose natural logarithm, Y, is treated as a second-order stationary random process. We consider nonreactive transport of dissolved chemicals to be governed by an Advection Dispersion Equation at the continuum scale.

View Article and Find Full Text PDF

We present a combined experimental and numerical modeling study that addresses two principal questions: (i) is any particular Eulerian-based method used to solve the classical advection-dispersion equation (ADE) clearly superior (relative to the others), in terms of yielding solutions that reproduce BTCs of the kind that are typically sampled at the outlet of a laboratory cell? and (ii) in the presence of matches of comparable quality against such BTCs, do any of these methods render different (or similar) numerical BTCs at locations within the domain? To address these questions, we obtained measurements from carefully controlled laboratory experiments, and employ them as a reference against which numerical results are benchmarked and compared. The experiments measure solute transport breakthrough curves (BTCs) through a square domain containing various configurations of coarse, medium, and fine quartz sand. The approaches to solve the ADE involve Eulerian-Lagrangian and Eulerian (finite volume, finite elements, mixed and discontinuous finite elements) numerical methods.

View Article and Find Full Text PDF

Multiphase flow in porous media is strongly influenced by the wettability of the system, which affects the arrangement of the interfaces of different phases residing in the pores. We present a method for estimating the effective contact angle, which quantifies the wettability and controls the local capillary pressure within the complex pore space of natural rock samples, based on the physical constraint of constant curvature of the interface between two fluids. This algorithm is able to extract a large number of measurements from a single rock core, resulting in a characteristic distribution of effective in situ contact angle for the system, that is modelled as a truncated Gaussian probability density distribution.

View Article and Find Full Text PDF

We investigate the scaling behavior of sample statistics of pore-scale Lagrangian velocities in two different rock samples, Bentheimer sandstone and Estaillades limestone. The samples are imaged using x-ray computer tomography with micron-scale resolution. The scaling analysis relies on the study of the way qth-order sample structure functions (statistical moments of order q of absolute increments) of Lagrangian velocities depend on separation distances, or lags, traveled along the mean flow direction.

View Article and Find Full Text PDF

We perform a set of detailed numerical simulations of single-phase, fully saturated flow in stochastically generated, three-dimensional pore structures with diverse porosities (ϕ) and degrees of connectivity, and analyze the probability density functions (PDFs) of the pore sizes, S, and vertical velocity components, w, which are aligned with the mean flow direction. Both of the PDFs are markedly skewed with pronounced positive tails. This feature of the velocity PDF is dictated by the pore structure and determines the shortest travel times, one of the key transport attributes that underpins the success or the failure of environmental remediation techniques.

View Article and Find Full Text PDF

The estimation of natural background levels (NBLs) of dissolved concentrations of target chemical species in subsurface reservoirs relies on a proper assessment of the effects of forcing terms driving flow and transport processes taking place within the system and whose dynamics drive background concentration values. We propose coupling methodologies based on (a) global statistical analyses and (b) numerical modeling of system dynamics to distinguish between the impacts of different types of external forcing components influencing background concentration values. We focus on the joint application of a statistical methodology based on Component Separation and experimental/numerical modeling studies of groundwater flow and transport for the NBL estimation of selected chemical species in potentially contaminated coastal aquifers.

View Article and Find Full Text PDF

Dissolved arsenic (As) concentrations detected in groundwater bodies of the Emilia-Romagna Region (Italy) exhibit values which are above the regulation limit and could be related to the natural composition of the host porous matrix. To support this hypothesis, we present the results of a geochemical modeling study reproducing the main trends of the dynamics of As, Fe, and Mn concentrations as well as redox potential and pH observed during batch tests performed under alternating redox conditions. The tests were performed on a natural matrix extracted from a deep aquifer located in the Emilia-Romagna Region (Italy).

View Article and Find Full Text PDF

We investigated the role of iron (Fe) on arsenic (As) release from two samples of a natural deep soil collected in an aquifer body in the Emilia-Romagna Region, Italy. Each sample is representative of a different solid matrix, i.e.

View Article and Find Full Text PDF

A bimolecular homogeneous irreversible reaction of the kind A+B→C is simulated in a plane channel as a base example of reactive transport processes taking place at the microscale within porous and/or fractured media. The numerical study explores the way microscale processes embedded in dimensionless quantities such as Péclet (Pe) and Damköhler (Da) numbers propagate to upscaled coefficients describing effective system dynamics. The microscale evolution of the reactant concentrations is obtained through a particle-based numerical method which has been specifically tailored to the considered problem.

View Article and Find Full Text PDF