Peripheral nerve injury is a common clinical disease. Effective post-injury nerve repair remains a challenge in neurosurgery, and clinical outcomes are often unsatisfactory, resulting in social and economic burden. Particularly, the repair of long-distance nerve defects remains a challenge.
View Article and Find Full Text PDFThe importance of SUMOylation in tumorigenesis has received increasing attention, and research on therapeutic agents targeting this pathway has progressed. However, the potential function of SUMOylation during hepatocellular carcinoma (HCC) progression and the underlying molecular mechanisms remain unclear. Here, we identified that SUMO-Specific Peptidase 3 (SENP3) was upregulated in HCC tissues and correlated with a poor prognosis.
View Article and Find Full Text PDFIschemia and hypoxia caused by vascular injury intensify nerve damage. Skin precursor-derived Schwann cells have demonstrated an accelerated in vivo prevascularization of tissue-engineered nerves. Furthermore, extracellular vesicles from skin precursor-derived Schwann cells (SKP-SC-EVs) show the potential in aiding peripheral nerve regeneration.
View Article and Find Full Text PDFSeawater desalination via electrochemical battery deionization (BDI) has shown significant potential for freshwater production. However, its widespread application has been limited by the high energy costs involved. To facilitate the commercialization of BDI technology, it is crucial to develop innovative integrated BDI systems that utilize sustainable energy sources and assess their practical performance for desalination of natural seawater.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Dynamic hydrogels are emerging as advanced materials for engineering tissue-like environments that mimic cellular microenvironments. We introduce a diselenide-cross-linked hydrogel system with light-responsive properties, designed for precise control of tumor organoid growth and light-initiated radical inactivation, particularly for dendritic cell (DC) vaccines. Diselenide exchange enables stress relaxation and hydrogel remodeling, while recombination and quenching of seleno radicals (Se) reduce cross-linking density, leading to controlled degradation.
View Article and Find Full Text PDFBackground: Metabolic-associated steatohepatitis (MASH) is one of the most prevalent liver diseases worldwide, with a global prevalence estimated between 3% and 5%, posing a significant health burden. Human liver organoids (HLOs) have previously been generated to model steatohepatitis, offering a potential cellular disease model for studying MASH. However, the current HLO model lacks detailed molecular characterizations and requires further improvement.
View Article and Find Full Text PDFSalidroside, a glucoside of tyrosol, is a powerful active ingredient extracted from the Chinese herb medicine Rhodiola rosea L.. As a neuroprotective agent, the application of salidroside in combination with neural tissue engineering has recently attracted much attention in peripheral nerve repair and reconstruction.
View Article and Find Full Text PDFSilk-based biodegradable materials play an important role in tissue engineering, especially in the field of bone regeneration. However, while optimizing mechanical properties and bone regeneration characteristics, modified silk fibroin (SF)-based materials also increase the complexity of scaffold systems, which is not conducive to clinical translation. In this study, we first added synthetic biomimetic mineralized collagen (MC) particles to SF-based materials to improve the bone regeneration properties of the scaffolds and simultaneously regulated the degradation rate of the scaffolds to match the bone regeneration rate.
View Article and Find Full Text PDF(-)-α-Bisabolol is a plant-derived sesquiterpene derived from which can be used as a raw material in cosmetics and has anti-inflammatory function. In this study, we designed six mutation sites of the (-)-α-bisabolol synthase BOS using the plmDCA algorithm. Among these, the F324Y mutation demonstrated exceptional performance, increasing the product yield by 73 %.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
The insatiable demand for lithium in portable energy storage necessitates a sustainable and low-carbon approach to its recovery. Conventional hydrometallurgical and pyrometallurgical methods heavily involve hazardous chemicals and significant CO emissions. Herein, by integrating electrode oxidation with electrolyte oxidation, we establish a photovoltaic-driven "dual-oxidation" seawater electrolyzer system for low-carbon footprint and high lithium recovery.
View Article and Find Full Text PDFThe decreased ability of mature oligodendrocytes to produce myelin negatively affects remyelination in demyelinating diseases and aging, but the underlying mechanisms are incompletely understood. In the present study, we identify a mature oligodendrocyte-enriched transcriptional coregulator diabetes- and obesity-related gene (DOR)/tumor protein p53-inducible nuclear protein 2 (TP53INP2), downregulated in demyelinated lesions of donors with multiple sclerosis and in aged oligodendrocyte-lineage cells. Dor ablation in mice of both sexes results in defective myelinogenesis and remyelination.
View Article and Find Full Text PDFCongenital myopathies (CMs) are a kind of non-progressive or slow-progressive muscle diseases caused by genetic mutations, which are currently defined and categorized mainly according to their clinicopathological features. CMs exhibit pleiotropy and genetic heterogeneity. Currently, supportive treatment and pharmacological remission are the mainstay of treatment, with no cure available.
View Article and Find Full Text PDFPeripheral nerve injury is a major challenge in clinical treatment due to the limited intrinsic capacity for nerve regeneration. Tissue engineering approaches offer promising solutions by providing biomimetic scaffolds and cell sources to promote nerve regeneration. In the present work, we investigated the potential role of skin-derived progenitors (SKPs), which are induced into neurons and Schwann cells (SCs), and their extracellular matrix in tissue-engineered nerve grafts (TENGs) to enhance peripheral neuroregeneration.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
August 2024
Monogalactosyldiacylglycerol (MGDG), a predominant photosynthetic membrane lipid derived from plants and microalgae, has important applications in feed additives, medicine, and other fields. The low content and various structural stereoselectivity differences of MGDG in plants limited the biological extraction or chemical synthesis of MGDG, resulting in a supply shortage of monogalactosyldiacylglycerol with a growing demand. Herein, we established Saccharomyces cerevisiae as a cell factory for efficient de novo production of monogalactosyldiacylglycerol for the first time.
View Article and Find Full Text PDFIntroduction: Motor neurons differ from sensory neurons in aspects including origins and surrounding environment. Understanding the similarities and differences in molecular response to peripheral nerve injury (PNI) and regeneration between sensory and motor neurons is crucial for developing effective drug targets for CNS regeneration. However, genome-wide comparisons of molecular changes between sensory and motor neurons following PNI remains limited.
View Article and Find Full Text PDFEpilepsy is a severe, relapsing, and multifactorial neurological disorder. Studies regarding the accurate diagnosis, prognosis, and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy. The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression, protein expression, ion channel activity, energy metabolites, and gut microbiota composition.
View Article and Find Full Text PDFExtracellular vesicles from skin-derived precursor Schwann cells (SKP-SC-EVs) promote neurite outgrowth in culture and enhance peripheral nerve regeneration in rats. This study aimed at expanding the application of SKP-SC-EVs in nerve grafting by creating a chitosan/PLGA-based, SKP-SC-EVs-containing tissue engineered nerve graft (TENG) to bridge a 40-mm long sciatic nerve defect in dogs. SKP-SC-EVs contained in TENGs significantly accelerated the recovery of hind limb motor and electrophysiological functions, supported the outgrowth and myelination of regenerated axons, and alleviated the denervation-induced atrophy of target muscles in dogs.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are essential in regenerative medicine. However, conventional expansion and harvesting methods often fail to maintain the essential extracellular matrix (ECM) components, which are crucial for their functionality and efficacy in therapeutic applications. Here, we introduce a bone marrow-inspired macroporous hydrogel designed for the large-scale production of MSC-ECM spheroids.
View Article and Find Full Text PDFPhagocytosis, a vital defense mechanism, involves the recognition and elimination of foreign substances by cells. Phagocytes, such as neutrophils and macrophages, rapidly respond to invaders; macrophages are especially important in later stages of the immune response. They detect "find me" signals to locate apoptotic cells and migrate toward them.
View Article and Find Full Text PDF