J Zhejiang Univ Sci B
June 2017
Background: Phosphorus (P) is an essential element for plant growth and development but it is often a limiting nutrient in soils. Hence, P acquisition from soil by plant roots is a subject of considerable interest in agriculture, ecology and plant root biology. Root architecture, with its shape and structured development, can be considered as an evolutionary response to scarcity of resources.
View Article and Find Full Text PDFStenotrophomonas maltophilia is an endophyte which plays important roles in agricultural production as a plant growth-promoting bacterium. Here, we present the draft genome sequence of strain RR-10, which was isolated from a rice root in a rice field of China.
View Article and Find Full Text PDFAcidovorax avenae subsp. avenae is a phytobacterium which is the causative agent of several plant diseases with economic significance. Here, we present the draft genome sequence of strain RS-1, which was isolated from rice shoots in a rice field in China.
View Article and Find Full Text PDFEnterobacter mori is a plant-pathogenic enterobacterium responsible for the bacterial wilt of Morus alba L. Here we present the draft genome sequence of the type strain, LMG 25706. To the best of our knowledge, this is the first genome sequence of a plant-pathogenic bacterium in the genus Enterobacter.
View Article and Find Full Text PDFBackground: The domesticated silkworm, Bombyx mori, is the model insect for the order Lepidoptera, has economically important values, and has gained some representative behavioral characteristics compared to its wild ancestor. The genome of B. mori has been fully sequenced while function analysis of BmChi-h and BmSuc1 genes revealed that horizontal gene transfer (HGT) maybe bestow a clear selective advantage to B.
View Article and Find Full Text PDFElucidating gene regulatory network of Arabidopsis thaliana under high salt treatment is crucial to understand the defense mechanism of maintaining normal growth rate. Here, an Arabidopsis Salt Overly Sensitive (SOS) transcriptional regulatory network under salinity stress was constructed using a reverse engineering method on published genome-wide expression profiles. In this study, the SOS regulatory network constructed contains 70 genes, of which 27 are highly interconnected transcription factors.
View Article and Find Full Text PDFUsing two-step HMM (hidden markov model) scan strategy,eight 14-3-3-like proteins were identified by searching the Oryza sativa L. ssp. japonica protein database.
View Article and Find Full Text PDF