Publications by authors named "Gu Hao"

3-methyl-4-nitrophenol (PNMC), a chemical prevalent in various industries for drug, dye, and leather production, also serves as a primary byproduct of organophosphate insecticides. Despite its global recognition as an endocrine disruptor with documented reproductive toxicity, its detrimental impact on preimplantation embryonic development has yet to be thoroughly investigated. In this study, through the in vitro culture of mice embryos, it was initially observed that even low concentrations of PNMC exposure led to a significant reduction in blastocyst formation and a sharp decline in the ratio of inner cell mass within the blastocysts.

View Article and Find Full Text PDF

The underlying mechanisms between cancer stem cells (CSC) and epithelial-mesenchymal transition (EMT) in pancreatic cancer (PC) remain unclear. In this study, we identified TGIF2 as a target gene of CSC using sncRNA and machine learning. TGIF2 is closely related to the expression of SOX2, EGFR, and E-cadherin, indicating poor prognosis.

View Article and Find Full Text PDF

Most current laser sintering (LS) machines for polymer powders operate with a maximum bed temperature of 200 °C, limiting the use of higher melting polymers like polyethylene terephthalate (PET), which melts at ~250 °C. Using bed temperatures of ≤200 °C leads to severe part-distortion due to curl and warpage during the sintering process. The paper presents a processing method for LS at low bed temperatures, using an in situ printed anchor film to conquer curl and warpage.

View Article and Find Full Text PDF

Objectives: To investigate the relationship between drinks behavior and female androgenetic alopecia (AGA) and to clarify the mediating effect of sleep behavior on such relationship.

Methods: A total of 308 female AGA patients and 305 female normal controls were recruited from the hospital, and questionnaires including drinks behavior and sleep behavior were inquired among them. Blood sugar and blood lipids were detected.

View Article and Find Full Text PDF

Corneal inflammation, especially severe corneal inflammation, plays a significant role in the development of corneal limbal stem cell dysfunction. Constructing appropriate animal models can help us focus on the effects of severe inflammation on corneal limbal stem cells. A 2 mm rust remover was used to remove the central corneal epithelium of Sprague Dawley (SD) rats to create an injury.

View Article and Find Full Text PDF

Dry eye disease is a prevalent condition affecting 5%-50% of the global population. Animal model investigations play a crucial role in understanding its underlying mechanisms. Therefore, we developed a mouse model of dry eye disease by surgically removing both the extraorbital lacrimal glands (ELG) and intraorbital lacrimal glands (ILG) to investigate the ocular surface pathology in the context of aqueous deficiency dry eye.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research identified critical molecules linked to hepatocellular carcinoma (HCC), but the tumor's varied nature makes prognosis prediction difficult; this study focuses on creating a model to improve these predictions using specific genes.
  • Using RNA data from TCGA and advanced analysis methods, researchers pinpointed 762 differentially expressed genes and highlighted ten key genes with strong prognostic importance, while also revealing insights about immune cell involvement in HCC.
  • The study established a reliable prognostic model based on these key genes, demonstrating significant correlations with immune cell infiltration and potential implications for targeted cancer treatments.
View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a highly aggressive malignancy with increasing global prevalence and is one of the leading causes of cancer-related mortality in the human population. Developing robust clinical prediction models and prognostic stratification strategies is crucial for developing individualized treatment plans. A range of novel forms of programmed cell death (PCD) plays a role in the pathological progression and advancement of HCC, and in-depth study of PCD is expected to further improve the prognosis of HCC patients.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a neurodegenerative disease primarily characterized by cognitive impairments. With the intensification of population aging, AD has become a major health concern affecting the elderly. Kaixinsan, a classical traditional Chinese formula, consists of Ginseng Panax et Rhizoma, Polygalae Radix, Poria and Acori Tatarinowii Rhizoma, and is commonly used in clinical for treating memory decline.

View Article and Find Full Text PDF

N6-methyladenosine (mA) is the most common modification in eukaryotic RNAs. Growing research indicates that mA methylation is crucial for a multitude of biological processes. However, research on the mA modifications in the regulation of porcine muscle growth is lacking.

View Article and Find Full Text PDF

Aqueous zinc ion batteries (AZIBs) are renowned for their exceptional safety and eco-friendliness. However, they face cycling stability and reversibility challenges, particularly under high-rate conditions due to corrosion and harmful side reactions. This work introduces fumaric acid (FA) as a trace amount, suitable high-rate, multifunctional, low-cost, and environmentally friendly electrolyte additive to address these issues.

View Article and Find Full Text PDF
Article Synopsis
  • 2D Ruddlesden-Popper perovskites (RPPs) are gaining popularity for their environmental stability, but their power conversion efficiency (PCE) remains lower than traditional 3D perovskite solar cells due to issues with carrier transport and phase heterogeneity.
  • The introduction of binary spacers like n-butylammonium and benzamidine helps improve the crystallization process, leading to more uniform phase distribution and enhanced carrier transport in RPP films.
  • The research achieved a record high PCE of 21.15% and an open circuit voltage of 1.26 V for low n-value RPP solar cells by using these spacers and high-quality single crystal structures, which also reduced
View Article and Find Full Text PDF

Drug repositioning is gaining attention as a method for developing new drugs due to its low cost, short cycle time, and high success rate. One important approach is to explore new uses for already marketed drugs. In this study, we utilized the strategy of drug repositioning, focusing on the Dan-Lou tablet.

View Article and Find Full Text PDF

We report herein a series of macrocycles in which the densely π-stacked charge-transfer (CT) donor/acceptor with naphthalenediimides (NDIs) or perylene diimide (PDI) as acceptor moiety pairing various donor moieties are locked by covalent bond. The X-ray crystallography of C8BDT-NDI reveals a short intramolecular π-stacking distance around 3.4 Å and the existence of intermolecular donor/acceptor π-stacking (3.

View Article and Find Full Text PDF

Aqueous zinc ion batteries are excellent energy storage devices with high safety and low cost. However, the corrosion reaction and zinc dendrite formation occurring on the surface of zinc anodes are hindering their further development. To solve the problems, zirconium acetate (ZA) was used as an electrolyte additive in the ZnSO electrolyte.

View Article and Find Full Text PDF
Article Synopsis
  • The reverse water gas shift reaction offers a potential solution for reducing CO emissions by converting carbon monoxide (CO) into syngas, but achieving high activity and selectivity with non-Cu catalysts remains a challenge.
  • A highly dispersed Ni species on hydroxylated TiO is created, leading to the formation of stable ~1 nm Ni clusters, which enhance both CO conversion rates and selectivity.
  • The study reveals that the unique properties of the Ni cluster/TiO catalyst stem from strong interfacial sites that effectively activate CO while allowing for weak CO adsorption, effectively resolving the activity-selectivity trade-off in the reaction.
View Article and Find Full Text PDF

Compounds with heterolayered architecture, as a family of two-dimensional (2D) materials, are composed of alternating positive and negative layers. Their physical properties are determined not only by the charged constituents, but also by the interaction between the two layers. This kind of material has been widely used for superconductivity, thermoelectricity, energy storage, In recent years, heterolayered compounds have been found as an encouraging choice for infrared photodetectors with high sensitivity, fast response, and remarkable reliability.

View Article and Find Full Text PDF

Continuous and reliable monitoring of gait is crucial for health monitoring, such as postoperative recovery of bone joint surgery and early diagnosis of disease. However, existing gait analysis systems often suffer from large volumes and the requirement of special space for setting motion capture systems, limiting their application in daily life. Here, we develop an intelligent gait monitoring and analysis prediction system based on flexible piezoelectric sensors and deep learning neural networks with high sensitivity (241.

View Article and Find Full Text PDF

Zinc (Zn) dendrite growth poses a significant challenge to the reversibility of zinc metal anodes (ZMAs). Traditional methods using fixed zincophilic sites often suffer from coverage issues and deactivation over time or under high areal capacities. To address this, we introduced Talc into a conventional ZnSO-based electrolyte (BE + Talc), which acts as a dynamic zincophilic site.

View Article and Find Full Text PDF

Mutations in oncogenes such as , and promote the growth and survival of tumors, while excessive RAS/RAF/MEK/ERK activation inhibits tumor growth. In this study we examined the precise regulatory machinery that maintains a moderate RAS/RAF/MEK/ERK pathway activation during CRC. Here, using bioinformatic analysis, transcriptomic profiling, gene silencing and cellular assays we discovered that a circular RNA, circRAPGEF5, is significantly upregulated in KRAS mutant colorectal cancer (CRC) cells.

View Article and Find Full Text PDF

Additive engineering plays a pivotal role in achieving high-quality light-absorbing layers for high-performance and stable perovskite solar cells (PSCs). Various functional groups within the additives exert distinct regulatory effects on the perovskite layer. However, few additive molecules can synergistically fulfill the dual functions of regulating crystallization and passivating defects.

View Article and Find Full Text PDF

The porcine reproductive and respiratory syndrome virus (PRRSV) is a highly significant infectious disease that poses a substantial threat to the global pig industry. In recent years, the NADC30-like strain has gradually emerged as prevalent in China, causing a profound impact on the country's pig farming industry. Therefore, it is important to conduct an in-depth study on the characteristics and gene functions of the NADC30-like strain.

View Article and Find Full Text PDF

Spindle bipolarization, the process of a microtubule mass transforming into a bipolar spindle, is a prerequisite for accurate chromosome segregation. In contrast to mitotic cells, the process and mechanism of spindle bipolarization in human oocytes remains unclear. Using high-resolution imaging in more than 1800 human oocytes, we revealed a typical state of multipolar intermediates that form during spindle bipolarization and elucidated the mechanism underlying this process.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzes global disparities in the incidence and mortality rates of gynecological cancers (GCs) using data from GLOBOCAN 2022, highlighting a significant impact on women’s health and healthcare systems worldwide.
  • In 2022, there were approximately 1.47 million new cases and 680,000 deaths from GCs globally, with the highest incidence and mortality rates in Eastern Africa, linked to factors like HIV and HPV.
  • Projections for 2050 indicate that if current trends continue, the burden of GCs will worsen, especially in regions with lower Human Development Index (HDI) ratings, underscoring the need for targeted health interventions.
View Article and Find Full Text PDF

The stabilization of the formamidinium lead iodide (FAPbI) structure is pivotal for the development of efficient photovoltaic devices. Employing two-dimensional (2D) layers to passivate the three-dimensional (3D) perovskite is essential for maintaining the α-phase of FAPbI and enhancing the power conversion efficiency (PCE) of perovskite solar cells (PSCs). However, the role of bulky ligands in the phase management of 2D perovskites, crucial for the stabilization of FAPbI, has not yet been elucidated.

View Article and Find Full Text PDF